Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aflatoxins (AFs) are secondary fungal metabolites that contaminate common food crops and are harmful to humans and animals. The ability to degrade or remove aflatoxins from common feed commodities will improve health standards and counter the economic drain inflicted by AF contamination. Bioremediation is a promising solution to AF contamination because of its low cost and few undesired environmental side-effects. Identifying new degrader species is highly beneficial in that it can offer alternatives to overcome the limitations of existing biodegraders, such as narrow working conditions and low degradation rates. Here, we screen several environmental isolates for their AF detoxification ability, using aflatoxin G. We use different carbon sources (glucose and starch) in isolation and culturing media to examine the effect of the environment on degradation ability. Strains isolated in media with starch as the primary carbon source showed a higher percentage of good AF degraders, 16% compared to 2% when glucose was the primary carbon source. Additionally, the majority of species isolated in glucose medium exhibited improved degradation efficiency when moved into starch medium, with one isolate improving degradation levels from 30 to 70%. Our starch screen also revealed three previously unidentified AF degrader bacterial species. Good aflatoxin G degraders also appear to perform well against aflatoxin B. Overall, for AF degradation, starch medium expedites the screening process and generally improves the performance of isolates. We thus propose that using starch as the carbon source is a promising means to identify new AF degraders in the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-024-83511-3 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685649 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!