Numerical investigation of performance and exergy analysis in parabolic trough solar collectors.

Sci Rep

Department of Mechanical and Aerospace Engineering, School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand, 248007, India.

Published: December 2024

This numerical investigation examines the performance and exergy analysis of parabolic trough solar collectors, focusing on the substitution of the conventional circular absorber with a rhombus-shaped absorber. By evaluating the thermal and fluid dynamics properties, this study aims to identify improvements in overall system performance and efficiency. This numerical study conducts a comprehensive thermal analysis of parabolic trough solar collectors by comparing a rhombus-shaped absorber with a conventional circular absorber. The analysis considers two rim angles of the parabolic trough, specifically 80° and 90°. Fluid flow rates ranging from 200 to 600 L per minute and inlet fluid temperatures spanning from 400 to 650 K are evaluated for each configuration. The objective is to determine the impact of absorber shape, rim angle, flow rate, and inlet temperature on the thermal performance and exergy efficiency of the system. Additionally, a slope error range of 0 to 2.5 mrad is incorporated into the study. The optical efficiency, thermal efficiency, exergy efficiency, and overall efficiency of the parabolic trough solar collector are estimated and compared for both absorber shapes. Results indicate that the thermal performance of the collector improves significantly with the rhombus-shaped absorber, showing maximum increases of 2.88% in thermal efficiency, 1.45% in exergy efficiency, and 1.4% in overall efficiency compared to the conventional circular absorber. These findings provide valuable insights for optimizing the design of parabolic trough solar collectors to enhance their overall efficiency and energy conversion effectiveness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685669PMC
http://dx.doi.org/10.1038/s41598-024-83219-4DOI Listing

Publication Analysis

Top Keywords

parabolic trough
24
trough solar
20
solar collectors
16
performance exergy
12
analysis parabolic
12
conventional circular
12
circular absorber
12
rhombus-shaped absorber
12
exergy efficiency
12
efficiency
10

Similar Publications

System identification and fault reconstruction in solar plants via extended Kalman filter-based training of recurrent neural networks.

ISA Trans

January 2025

Dept. de Ingeniería de Sistemas y Automática, University of Seville, Camino de los Descubrimientos, no number E-41092, Seville, Spain. Electronic address:

This article proposes using the extended Kalman filter (EKF) for recurrent neural network (RNN) training and fault estimation within a parabolic-trough solar plant. The initial step involves employing an RNN to model the system. Given the challenge of fault discernibility in the collectors, parallel EKFs are employed to reconstruct the parameters of the faults.

View Article and Find Full Text PDF

Numerical investigation of performance and exergy analysis in parabolic trough solar collectors.

Sci Rep

December 2024

Department of Mechanical and Aerospace Engineering, School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand, 248007, India.

This numerical investigation examines the performance and exergy analysis of parabolic trough solar collectors, focusing on the substitution of the conventional circular absorber with a rhombus-shaped absorber. By evaluating the thermal and fluid dynamics properties, this study aims to identify improvements in overall system performance and efficiency. This numerical study conducts a comprehensive thermal analysis of parabolic trough solar collectors by comparing a rhombus-shaped absorber with a conventional circular absorber.

View Article and Find Full Text PDF

Small-sized parabolic trough collectors are a promising solution for renewable heat supply, meeting the industrial demand for thermal energy up to 250°. In this manuscript, a novel, to our knowledge, optical design hybridizing parabolic trough concentrators with photovoltaic generators is introduced, incorporating actionable photovoltaic slats in the aperture plane. This configuration allows efficient operation under diffuse irradiance and improves electricity production when direct irradiation is insufficient.

View Article and Find Full Text PDF

In this study, a sustainable method employing concentrated sunlight to achieve environmental remediation of wastewater, contaminated by Ciprofloxacin antibiotic (CIP), is thoroughly investigated. A green ZnO/g-CN nanocomposite (NC) is used as a photocatalyst coating on glass to investigate the inactivation of CIP in water, in a flow-reactor configuration at small-prototype scale (10 liters/h, catalyst area 187.5 cm).

View Article and Find Full Text PDF

In past years, concentrated solar power (CSP) with an energy backup system has been a unique renewable energy utilization system among intermittent renewable energy systems. It could allow a CSP plant to operate as a base load system in the future. This paper simulates a solar power plant for 1 MWe.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!