A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Attenuated cadmium and arsenic enrichment in rice by co-application of organic composting and chemical fertilization. | LitMetric

Attenuated cadmium and arsenic enrichment in rice by co-application of organic composting and chemical fertilization.

Sci Rep

College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, 400715, China.

Published: December 2024

A pot experiment was conducted on arsenic (As) and cadmium (Cd) co-contaminated soil to discern the influence of varying proportions of pig manure compost (PM) vis-à-vis chemical fertilizers (NPK) on the mitigation of Cd and As absorption by rice. Our findings illustrated that by increasing the PM proportions from 25 to 100%, it manifested a statistically significant reduction in the mobilized fractions of Cd, accounting for up to 77% reduction in soil CaCl-Cd concentrations. Conversely, the NaHCO-As reactions were contingent on the distinct PM application rates. Furthermore, augmented PM application rates correlated with a substantial surge in Cd and As concentrations within the iron (Fe) and manganese (Mn) plaques, ranging from up to 116.6% and 85.9%, respectively. This led to a concomitant decline in Cd and As concentrations within the grains, up to 72.6% and 74.5%, respectively. Notably, grain concentrations of As and Cd diminished progressively with increased PM application, reaching a nadir with the 75% PM treatment. In summary, the observed mitigation in contamination is postulated to stem from the modulation of soil attributes via PM addition, which curtails Cd availability, combined with the bolstered immobilization of As and Cd by the Fe/Mn plaques.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-83412-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686351PMC

Publication Analysis

Top Keywords

application rates
8
attenuated cadmium
4
cadmium arsenic
4
arsenic enrichment
4
enrichment rice
4
rice co-application
4
co-application organic
4
organic composting
4
composting chemical
4
chemical fertilization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!