Klotho has been importantly linked to atherosclerosis, but little is known about its specific role. This study investigates the mechanism by which Klotho enhances the stability of atherosclerotic plaques in chronic kidney disease. apoE-/- knockout mice and C57BL/6 mice underwent 5/6 nephrectomy and then klotho-NC and klotho-mimic groups were set up to be fed a high-fat chow diet and a dummy group was created to be fed a normal chow diet. qPCR detected relative mRNA expression of klotho. Oil Red O and HE staining assessed lipid proportion in the aorta. Masson staining evaluated renal failure pathology in mice. Immunohistochemistry measured MAC-2 and α-SMA expression in the aorta. ELISA quantified urea, cholesterol, calcium ions, and triglycerides in mouse plasma. Western blotting detected associated protein expression, followed by cell-based experiments for validation. Compared with the Klotho-NC group, the plaque area and aortic lipid and renal fibrosis area were reduced in the Klotho-mimic group. Klotho-mimic reduced macrophage area, plasma urea, cholesterol, calcium ions, and triglyceride levels, and decreased the expression of p-PERK, NOX2, NOX4, Caspase-3, Caspase-9, Bax, p-GRK2, p-PLCβ, p-Src, and p-IP3R. Without ox-LDL stimulation, Klotho expression increased in the Klotho-mimic group, with no significant differences in NOX2, p-SHP1, p-Src, p-PERK, p-GRK2, and p-PLCβ. With ox-LDL in high-calcium medium, Klotho and p-SHP1 increased, while NOX2, p-Src, p-PERK, p-GRK2, and p-PLCβ decreased in the Klotho-mimic group. After ox-LDL and TPI-1 treatment, Klotho increased, NOX2 decreased, and other proteins showed no significant changes. Adding shRNA-GRK2 reduced NOX2, p-Src, and p-PERK, increased p-SHP1, with no changes in p-GRK2 and p-PLCβ. Differences in NOX2, p-GRK2, p-PLCβ, and p-PERK between groups were reduced in high-calcium medium, while p-SHP1 differences increased. Klotho enhances chronic kidney disease atherosclerotic plaque stability by inhibiting GRK2/PLC-β-mediated endoplasmic reticulum stress in macrophages via the ROS/SHP1 pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685394 | PMC |
http://dx.doi.org/10.1038/s41598-024-83596-w | DOI Listing |
Sci Rep
December 2024
Division of Nephrology, Affiliated Hospital of Hebei University, Baoding, China.
Klotho has been importantly linked to atherosclerosis, but little is known about its specific role. This study investigates the mechanism by which Klotho enhances the stability of atherosclerotic plaques in chronic kidney disease. apoE-/- knockout mice and C57BL/6 mice underwent 5/6 nephrectomy and then klotho-NC and klotho-mimic groups were set up to be fed a high-fat chow diet and a dummy group was created to be fed a normal chow diet.
View Article and Find Full Text PDFCell Biol Toxicol
November 2024
Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, 230032, China.
Background: The present study investigated the function of G protein-coupled receptor kinase 2 (GRK2) in acute liver injury (ALI) by cisplatin, and investigated the protective effect of pharmacological inhibition of GRK2.
Methods: ALI models were generated in global adult hemizygous (ALI-Grk2) mice and wild-type (WT) mice. Liver biochemistry parameters and histopathology were used to evaluate the severity of ALI and the protective effect of pharmacological inhibition of GRK2.
Sci Rep
July 2024
College of Basic Medicine, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China.
Astragaloside IV, a prime active component of Astragalus membranaceus, has potential as a neuroprotectant. We aimed to identify the active ingredients in A. membranaceus and assess if Astragaloside IV can improve cerebral ischemia-reperfusion injury (CIRI) cell apoptosis by reducing P-Src and P-GRK2 via ryanodine receptor (RyR) expression inhibition.
View Article and Find Full Text PDFReproduction
October 2024
Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
In Brief: GRK2 deficiency disrupts the early embryonic development in pigs. The regulation of GRK2 on HSP90 and AKT may also play an important role during embryo development and tumor formation.
Abstract: Among the family of GPCR kinases (GRKs) that regulate receptor phosphorylation and signaling termination, G-protein-coupled receptor kinase 2 (GRK2) binds to HSP90 in response to hypoxia or other stresses.
Hum Cell
March 2021
Department of Clinical Laboratory, Hebei General Hospital, No. 348, Heping Road, Xinhua District, Shijiazhuang, 050051, China.
In this study, we aimed to investigate the role of SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) in cardiac remodeling after myocardial infarction (MI) and explore the underlying molecular mechanism. MI model was established by ligation of the left anterior descending coronary artery. C57/BL6J mice were randomly administered with 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!