The circle of Willis (CoW) is a circular arrangement of arteries in the human brain, exhibiting significant anatomical variability. The CoW is extensively studied in relation to neurovascular pathologies, with certain anatomical variants previously linked to ischemic stroke and intracranial aneurysms. In an individual CoW, arteries might be absent (aplasia) or underdeveloped (hypoplasia, diameter < 1 mm). As the assessment of such variations is time-consuming and susceptible to subjectivity, robust automatic extraction of personalized CoW topology from time-of-flight magnetic resonance angiography (TOF-MRA) images would highly benefit large-scale clinical investigations. Previous work has sought to extract CoW topology from voxel-based semantic segmentation masks. However, hypoplastic arteries are challenging to recover in voxel-based segmentation. Instead, we propose using a complete CoW as an anatomical prior for extracting all possible CoW arteries as shortest paths between automatically identified anatomical landmarks, guided by automatically determined artery orientation vector fields. These fields are obtained using a scale-invariant and rotation-equivariant mesh-CNN-based model (SIRE). For a 3D TOF-MRA volume, a potentially overcomplete graph of the CoW is thus extracted in which each edge represents an artery. Subsequently, a binary Random Forest classifier labels each artery as normal or hypo-/aplastic. The model was optimized and validated using a data set of 351 3D TOF-MRA scans in a cross-validation setup. We showed that using a shortest path algorithm with a cost function based on local artery orientations results in continuous artery paths, even in hypoplastic cases. We tracked the correct path in the posterior communicating arteries in 70-74% of the cases, an artery that is known to pose challenges in voxel-based segmentation models. Our downstream artery path classifier obtained an average F1 score of 0.91, demonstrating the potential of our proposed framework to extract personalized CoW topology automatically.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686194 | PMC |
http://dx.doi.org/10.1038/s41598-024-80574-0 | DOI Listing |
Animals (Basel)
December 2024
CISAS-Center for Research in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, Rua da Escola Industrial e Comercial Nun'Alvares 34, 4900-347 Viana do Castelo, Portugal.
The veal niche market is gaining momentum in Brazil. Locally known as 'Vitelão', veal refers to the meat from calves slaughtered up to 12 months of age. In this study, we assessed the Galician Blond × Nelore cross as a candidate to produce veal.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Applied Mathematics, Technical Medical Centre, University of Twente, Enschede, The Netherlands.
The circle of Willis (CoW) is a circular arrangement of arteries in the human brain, exhibiting significant anatomical variability. The CoW is extensively studied in relation to neurovascular pathologies, with certain anatomical variants previously linked to ischemic stroke and intracranial aneurysms. In an individual CoW, arteries might be absent (aplasia) or underdeveloped (hypoplasia, diameter < 1 mm).
View Article and Find Full Text PDFAnimals (Basel)
November 2024
Laboratory of Animal Husbandry, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece.
Biol Res
October 2024
Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Rua Prof. Doutor Walter Mauricio Correa, s/n, Botucatu, São Paulo, 18618-681, Brazil.
Background: There are many gaps in our understanding of the mechanisms involved in ovarian follicular development in cattle, particularly regarding follicular deviation, acquisition of ovulatory capacity, and preovulatory changes. Molecular evaluations of ovarian follicular cells during follicular development in cattle, especially serial transcriptomic analyses across key growth phases, have not been reported. This study aims to address this gap by analyzing gene expression using RNA-seq in granulosa and antral cells recovered from ovarian follicular fluid during critical phases of ovarian follicular development in Holstein cows.
View Article and Find Full Text PDFBMC Oral Health
October 2024
Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
Background: The use of biological scaffolds in regenerative endodontics has gained much attention in recent years. The search for a new biomimetic scaffold that contains tissue-specific cell homing factors could lead to more predictable tissue regeneration. The aim of this study was to prepare and characterize decellularized bovine dental pulp-derived extracellular matrix (P-ECM) hydrogels for regenerative endodontic applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!