Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nodal loop semimetals are topological materials with drumhead surface states characterized by reduced kinetic energy. If the Fermi energy of such a system is near these nondispersive states interaction among charge carriers substantially impacts their electronic structure. The emergence of magnetism in these surface states is one of the possible consequences. Ca[Formula: see text]P[Formula: see text] an already synthesized material possesses a remarkably large nodal loop which is situated exactly at the Fermi level of the bulk system. In the present work, we investigate how surface magnetism is impacted by surface reconstruction and lattice termination in finite slabs in this material. We show that a slight deviation from the stoichiometric occupation of Ca sites results in the stabilization of magnetic patterns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-024-83168-y | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686118 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!