The study suggests a better multi-objective optimization method called 2-Archive Multi-Objective Cuckoo Search (MOCS2arc). It is then used to improve eight classical truss structures and six ZDT test functions. The optimization aims to minimize both mass and compliance simultaneously. MOCS2arc is an advanced version of the traditional Multi-Objective Cuckoo Search (MOCS) algorithm, enhanced through a dual archive strategy that significantly improves solution diversity and optimization performance. To evaluate the effectiveness of MOCS2arc, we conducted extensive comparisons with several established multi-objective optimization algorithms: MOSCA, MODA, MOWHO, MOMFO, MOMPA, NSGA-II, DEMO, and MOCS. Such a comparison has been made with various performance metrics to compare and benchmark the efficacy of the proposed algorithm. These metrics comprehensively assess the algorithms' abilities to generate diverse and optimal solutions. The statistical results demonstrate the superior performance of MOCS2arc, evidenced by enhanced diversity and optimal solutions. Additionally, Friedman's test & Wilcoxon's test corroborate the finding that MOCS2arc consistently delivers superior optimization results compared to others. The results show that MOCS2arc is a highly effective improved algorithm for multi-objective truss structure optimization, offering significant and promising improvements over existing methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-024-82918-2 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685762 | PMC |
Sci Rep
December 2024
Department of Electrical and Electronics Engineering, Engineering Faculty, Düzce University, Düzce, Turkey.
The study suggests a better multi-objective optimization method called 2-Archive Multi-Objective Cuckoo Search (MOCS2arc). It is then used to improve eight classical truss structures and six ZDT test functions. The optimization aims to minimize both mass and compliance simultaneously.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2023
Department of Civil and Architectural Engineering, Sultan Qaboos University, Muscat, Oman.
Water pollution escalates with rising waste discharge in river systems, as the rivers' limited pollution tolerance and constrained self-cleaning capacity compel the release of treated pollutants. Although several studies have shown that the non-dominated sorting genetic algorithm-II (NSGA-II) is an effective algorithm regarding the management of river water quality to reach water quality standards, to our knowledge, the literature lacks using a new optimization model, namely, the multi-objective cuckoo optimization algorithm (MOCOA). Therefore, this research introduces a new optimization framework, including non-dominated sorting and ranking selection using the comparison operator densely populated towards the best Pareto front and a trade-off estimation between the goals of discharges and environmental protection authorities.
View Article and Find Full Text PDFSci Prog
January 2023
Department of Electrical & Computer Engineering, Jimma University College of Engineering and Technology, Jimma, Ethiopia.
Making decisions about the design and implementation of a logistics network is crucial as it has long-term impacts. However, it is important to consider that demand factors and the number of returned items by customers may change over time. Therefore, it is necessary to design a logistics network that can adapt to various demand fluctuations.
View Article and Find Full Text PDFPeerJ Comput Sci
June 2023
Post Graduate Program in Electrical Engineering, Institute of Technology of Federal University of Pará, Federal University of Pará, Belém, PA, Brasil.
One of the key technologies in smart cities is the use of next generation networks such as 5G networks. Mainly because this new mobile technology offers massive connections in densely populated areas in smart cities, thus playing a crucial role for numerous subscribers anytime and anywhere. Indeed, all the most important infrastructure to promote a connected world is being related to next generation networks.
View Article and Find Full Text PDFIEEE Trans Image Process
March 2023
With the increasing spectral dimension of hyperspectral images (HSI), how correctly choose bands based on band correlation and information has become more significant, but also complicated. Band selection is a combinatorial optimization problem, and intelligent optimization algorithms have been shown to be crucial in solving combinatorial optimization problems. However, major of them only use a single objective as the selection index, while neglecting the overall features of hyperspectral images, which may lead to inaccuracy in object detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!