Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis. RNA-seq data of 1412 liver tumors from FLC, hepatocellular carcinoma, hepatoblastoma and intrahepatic cholangiocarcinoma are analyzed, obtaining transcriptomic signatures unrestricted by experimental processing methods. These signatures reveal which dysregulations are unique to specific tumors and which are common to all liver cancers. Moreover, the transcriptomic FLC signature identifies a unifying phenotype for all FLC tumors regardless of how PKA was activated. We study this signature at multi-omics and single-cell levels in the first spatial transcriptomic characterization of FLC, identifying the contribution of tumor, normal, stromal, and infiltrating immune cells. Additionally, we study FLC metastases, finding small differences from the primary tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-024-55238-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685927PMC

Publication Analysis

Top Keywords

hepatocellular carcinoma
12
liver cancer
8
protein kinase
8
fibrolamellar hepatocellular
8
flc
8
liver tumors
8
tumors
6
liver
5
cancer multiomics
4
multiomics reveals
4

Similar Publications

Hepatocellular carcinoma (HCC) is a primary malignant neoplasm exhibiting a high mortality rate. Taxifolin is a naturally occurring flavonoid compound that exhibits a range of pharmacological properties. The effects of taxifolin on HCC remain largely unexplored.

View Article and Find Full Text PDF

Background: AT-rich interaction domain 4B (ARID4B) is a transcriptional activator that regulates the phosphatidylinositol 3-kinase (PI3K)/AKT pathway in prostate cancer. However, the role of ARID4B in hepatocellular carcinoma (HCC) has remained unclear.

Methods: This study included 162 patients who had undergone primary hepatic resection for HCC between 2008 and 2019.

View Article and Find Full Text PDF

Phase 2 study of serplulimab with the bevacizumab biosimilar HLX04 in the first-line treatment of advanced hepatocellular carcinoma.

Cancer Immunol Immunother

January 2025

Liver Cancer Institute, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.

Introduction: This study aimed to evaluate the safety and preliminary efficacy of serplulimab, a novel programmed death-1 inhibitor, with or without bevacizumab biosimilar HLX04 as first-line treatment in patients with advanced hepatocellular carcinoma.

Methods: This open-label, multicenter phase 2 study (clinicaltrials.gov identifier NCT03973112) was conducted in China and consisted of four treatment groups: group A (serplulimab 3 mg/kg plus HLX04 5 mg/kg, subsequent-line), group B (serplulimab 3 mg/kg plus HLX04 10 mg/kg, subsequent-line), group C (serplulimab 3 mg/kg, subsequent-line) and group D (serplulimab 3 mg/kg plus HLX04 10 mg/kg, first-line).

View Article and Find Full Text PDF

Diagnostic Value of Circulating microRNAs for Hepatocellular Carcinoma: Results of a Meta-analysis and Validation.

Biochem Genet

January 2025

Qingdao Ruiside Medical Laboratory Co., LTD, Qingdao, 266111, Shandong, People's Republic of China.

Mounting evidence suggests that circulating microRNAs (miRNAs) hold diagnostic value in various malignancies. To identify circulating miRNAs for the early diagnosis of hepatocellular carcinoma (HCC), we conducted a meta-analysis to evaluate the diagnostic utility of miRNAs in HCC and further validated the results of the meta-analysis. English articles published prior to December 2023 were retrieved from databases including PubMed, Embase, and Web of Science.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) ranks fourth in cancer-related mortality worldwide. This study aims to uncover the genes and pathways involved in HCC through network pharmacology (NP) and to discover potential drugs via machine learning (ML)-based ligand screening. Additionally, toxicity prediction, molecular docking, and molecular dynamics (MD) simulations were conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!