Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Early prediction of patient responses to neoadjuvant chemotherapy (NACT) is essential for the precision treatment of early breast cancer (EBC). Therefore, this study aims to noninvasively and early predict pathological complete response (pCR). We used dynamic ultrasound (US) imaging changes acquired during NACT, along with clinicopathological features, to create a nomogram and construct a machine learning model. This retrospective study included 304 EBC patients recruited from multiple centers. All enrollees had completed NACT regimens, and underwent US examinations at baseline and at each NACT cycle. We subsequently determined that percentage reduction of tumor maximum diameter from baseline to third cycle of NACT serves to independent predictor for pCR, enabling creation of a nomogram ([Formula: see text]). Our predictive accuracy further improved ([Formula: see text]) by combining dynamic US data and clinicopathological features in a machine learning model. Such models may offer a means of accurately predicting NACT responses in this setting, helping to individualize patient therapy. Our study may provide additional insights into the US-based response prediction by focusing on the dynamic changes of the tumor in the early and full NACT cycle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-024-80409-y | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685924 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!