A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Clustering Cu-S based compounds using periodic table representation and compositional Wasserstein distance. | LitMetric

Clustering Cu-S based compounds using periodic table representation and compositional Wasserstein distance.

Sci Rep

Key Laboratory of Computing Power Network and Information Security, Shandong Computer Science Center (National Supercomputing Center in Jinan), Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, Shandong, P. R. China.

Published: December 2024

Crystal structure similarity is useful for the chemical analysis of nowadays big materials databases and data mining new materials. Here we propose to use two-dimensional Wasserstein distance (earth mover's distance) to measure the compositional similarity between different compounds, based on the periodic table representation of compositions. To demonstrate the effectiveness of our approach, 1586 Cu-S based compounds are taken from the inorganic crystal structure database (ICSD) to form a validation dataset. By using local structure order parameters as a geometrical similarity metric, the similarity matrix including both compositional and geometrical similarities is calculated. Then all the Cu-S compounds are clustered into 86 groups using the similarity matrix and "density-based spatial clustering of applications with noise" (DBSCAN) algorithm. Some selected groups are analyzed using crystal structure visualization of hundreds of compounds, which provides chemical insights of the similarity metrics and shows the effectiveness of clustering. A group of rare earth containing layered Cu-S compounds is proposed for further experimental investigation as potential thermoelectric materials, based on a structure-property relationship consideration that similar structures tend to have similar properties. The unsupervised clustering approach in this work can be easily applied to other datasets, which will help for chemical understanding of the materials datasets and discover new materials with similarity properties based on the similarity metrics.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-79126-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685849PMC

Publication Analysis

Top Keywords

crystal structure
12
cu-s based
8
based compounds
8
periodic table
8
table representation
8
wasserstein distance
8
similarity
8
similarity matrix
8
cu-s compounds
8
similarity metrics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!