Cadmium, a toxic heavy metal, poses significant global concern. A strain of the genus Pseudomonas, CD3, demonstrating significant cadmium resistance (up to 3 mM CdCl.HO) was identified from a pool of 26 cadmium-resistant bacteria isolated from cadmium-contaminated soil samples from Malda, India. The minimum inhibitory concentrations (MICs) for cadmium and other heavy metals/metalloids were determined with clarity using a modified chemically-defined medium inoculated with variable inoculum density. Formation of biofilm enabled CD3 cells to resist up to 0.75 mM CdCl.HO. Survival and growth of CD3 cells in presence of > 1 mM CdCl.HO was dependent on efflux mechanism. Efflux mechanism in CD3 was confirmed by atomic absorption spectroscopy. Resistance to cadmium was inducible when grown in presence of ≥ 1.0 mM CdCl.HO. Minimum concentration of cadmium or zinc or cobalt salts required for induction of cadmium resistance was determined. Whole-genome-based phylogenetic tools identified CD3 as the closest relative to Pseudomonas aeruginosa DSM50071. Bioinformatic analyses revealed a complex network of regulations, with BfmR playing a crucial role in the functions of CzcR and CzcS, essential for biofilm formation and receptor signalling pathways. Comparative genomics and mutation landscape analyses of cadmium-resistance genes in P. aeruginosa strains revealed dynamism in evolution of cadmium resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-024-80754-y | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685661 | PMC |
PLoS One
December 2024
College of Agriculture, Xinyang Agriculture and Forestry University, Xinyang, China.
The ATP-dependent zinc metalloprotease (FtsH) protein gene family is essential for plant growth, development, and stress responses. Although FtsH genes have been identified in various plant species, the FtsH gene family in wheat (Triticum aestivum) remains unstudied. In this study, we identified 11 TaFtsH genes with uneven chromosomal distribution, significant variations in gene sequence length, and differing intron numbers among individual members.
View Article and Find Full Text PDFSci Rep
December 2024
OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri, West Bengal, 734013, India.
Cadmium, a toxic heavy metal, poses significant global concern. A strain of the genus Pseudomonas, CD3, demonstrating significant cadmium resistance (up to 3 mM CdCl.HO) was identified from a pool of 26 cadmium-resistant bacteria isolated from cadmium-contaminated soil samples from Malda, India.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
To select the mycorrhizal seedlings of with excellent Cd-resistance and explore the mechanism of promoting the resistance to Cd stress of , nine species of isolated from different hosts infected to form mycorrhizal seedlings, were cultured in Cd-contaminated soil for three months. We conducted the principal component analysis (PCA) on biomass, root structure, and photosynthesis, and evaluated the Cd tolerance of mycorrhizal seedlings by membership function. The results showed that dry and fresh weight of mycorrhizal seedlings under Cd stress were 1.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.
Both rhizospheric soil microbes and shoot litter input can have profound effects on plant performance; however, their interactive effects on plants in Cd-contaminated soils remain poorly understood. We grew an invasive hyperaccumulator, , in sterilized and unsterilized rhizosphere soil without litter or with a low (0.2%, dry weight ratio) or a high amount (1%) of litter from in soil with low (5 mg kg) or high (10 mg kg) concentrations of Cd.
View Article and Find Full Text PDFJ Biotechnol
December 2024
School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
Heavy metal pollution is a worldwide problem that threaten agricultural production and human health. Methyl jasmonate (MeJA) is a phytohormone that could enhance plant resistance against various stresses. However, the mechanism of MeJA in cadmium (Cd) uptake, distribution, and translocation in rice plants remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!