Mid-infrared photoacoustic microscopy can capture biochemical information without staining. However, the long mid-infrared optical wavelengths make the spatial resolution of photoacoustic microscopy significantly poorer than that of conventional confocal fluorescence microscopy. Here, we demonstrate an explainable deep learning-based unsupervised inter-domain transformation of low-resolution unlabeled mid-infrared photoacoustic microscopy images into confocal-like virtually fluorescence-stained high-resolution images. The explainable deep learning-based framework is proposed for this transformation, wherein an unsupervised generative adversarial network is primarily employed and then a saliency constraint is added for better explainability. We validate the performance of explainable deep learning-based mid-infrared photoacoustic microscopy by identifying cell nuclei and filamentous actins in cultured human cardiac fibroblasts and matching them with the corresponding CFM images. The XDL ensures similar saliency between the two domains, making the transformation process more stable and more reliable than existing networks. Our XDL-MIR-PAM enables label-free high-resolution duplexed cellular imaging, which can significantly benefit many research avenues in cell biology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41467-024-55262-2 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685655 | PMC |
Theranostics
January 2025
Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
Metastasis represents a stage in which the therapeutic objective changes from curing disease to prolonging survival, as detection typically occurs at advanced stages. Technologies for the early identification of disease would enable treatment at a lower disease burden and heterogeneity. Herein, we investigate the vascular dynamics within a synthetic metastatic niche as a potential marker of disease progression.
View Article and Find Full Text PDFSci Rep
December 2024
Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 30 Bolshoy Boulevard, bld. 1, Moscow, 121205, Russia.
Photonic-based methods are crucial in biology and medicine due to their non-invasive nature, allowing remote measurements without affecting biological specimens. The study of diatoms using advanced photonic methods remains a relatively underexplored area, presenting significant opportunities for pioneering discoveries. This research provides a comprehensive analysis of marine diatoms, specifically Nitzschia sp.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
Mid-infrared photoacoustic microscopy can capture biochemical information without staining. However, the long mid-infrared optical wavelengths make the spatial resolution of photoacoustic microscopy significantly poorer than that of conventional confocal fluorescence microscopy. Here, we demonstrate an explainable deep learning-based unsupervised inter-domain transformation of low-resolution unlabeled mid-infrared photoacoustic microscopy images into confocal-like virtually fluorescence-stained high-resolution images.
View Article and Find Full Text PDFJ Cardiovasc Dev Dis
December 2024
Department of Medicine, University of California, 650 Charles E Young Dr. S, Center for Health Sciences, Room A2-237, Los Angeles, CA 90095, USA.
The detection and assessment of atherosclerosis and cardiovascular calcification can inform risk stratification and therapies to reduce cardiovascular morbidity and mortality. In this review, we provide an overview of current and emerging imaging techniques for assessing atherosclerosis and cardiovascular calcification in animal models. Traditional imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), offer non-invasive approaches of visualizing atherosclerotic calcification in vivo; integration of these techniques with positron emission tomography (PET) imaging adds molecular imaging capabilities, such as detection of metabolically active microcalcifications with F-sodium fluoride.
View Article and Find Full Text PDFLaser Photon Rev
October 2024
Harvard Medical School, Boston, MA 02114, USA; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Cardiology, Erasmus Medical Center, Rotterdam GD3015, The Netherlands; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
Photoacoustic microscopy (PAM) is a high-resolution and non-invasive imaging modality that provides optical absorption contrast. By employing dual- or multiple-wavelength excitation, PAM extends its capabilities to offer valuable spectroscopic information. To achieve efficient multispectral PAM imaging, an essential requirement is a light source characterized by a high repetition rate and switching rate, a ≈microjoule pulse energy, and a ≈nanosecond pulse duration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!