The general control non-repressible 5 (GCN5)-related N-acetyltransferase (GNAT) SbzI, in the biosynthesis of the sulfonamide antibiotic altemicidin, catalyzes the transfer of the 2-sulfamoylacetyl (2-SA) moiety onto 6-azatetrahydroindane dinucleotide. While most GNAT superfamily utilize acyl-coenzyme A (acyl-CoA) as substrates, SbzI recognizes a carrier-protein (CP)-tethered 2-SA substrate. Moreover, SbzI is the only naturally occurring enzyme that catalyzes the direct incorporation of sulfonamide, a valuable pharmacophore in medicinal chemistry. Here, we present the structure-function analysis and structure-based engineering of SbzI. The crystal structure of SbzI in complex with the CP SbzG, along with cross-linking and isothermal titration calorimetry analyses of their variants, revealed the structural basis for CP recognition by the GNAT SbzI. Furthermore, docking simulation, molecular dynamics simulation, and mutagenesis studies indicated the intimate structural details of the unique reaction mechanism of SbzI, which does not utilize a general base residue in contrast to other typical GNATs. These findings facilitated rational engineering of the enzyme to expand the substrate range and to generate azaindane dinucleotide derivatives.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-024-55265-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685415PMC

Publication Analysis

Top Keywords

structure-function analysis
8
gnat sbzi
8
sbzi
7
analysis carrier
4
carrier protein-dependent
4
protein-dependent 2-sulfamoylacetyl
4
2-sulfamoylacetyl transferase
4
transferase biosynthesis
4
biosynthesis altemicidin
4
altemicidin general
4

Similar Publications

Structure-Function Analysis of CYP105A1 in the Metabolism of Nonsteroidal Anti-inflammatory Drugs.

Biochemistry

January 2025

Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.

CYP105A1 exhibits monooxygenase activity to a wide variety of structurally different substrates with regio- and stereospecificity, making its application range broad. Our previous studies have shown that CYP105A1 wild type and its variants metabolize 12 types of nonsteroidal anti-inflammatory drugs (NSAIDs). In particular, the R84A variant exhibited a high activity against many NSAIDs.

View Article and Find Full Text PDF

B0AT1 (SLC6A19) is a major sodium-coupled neutral amino acid transporter that relies on angiotensin converting enzyme 2 (ACE2) or collectrin for membrane trafficking. Despite its significant role in disorders associated with amino acid metabolism, there is a deficit of comprehensive structure-function understanding of B0AT1 in lipid environment. Herein, we have employed molecular dynamics (MD) simulations to explore the architectural characteristics of B0AT1 in two distinct environments: a simplified POPC bilayer and a complex lipid system replicating the native membrane composition.

View Article and Find Full Text PDF

The eye and the heart are two closely interlinked organs, and many diseases affecting the cardiovascular system manifest in the eye. To contribute to the understanding of blood flow propagation towards the retina, we developed a method to acquire electrocardiogram (ECG) coupled time-resolved dynamic optical coherence tomography (OCT) images. This method allows for continuous synchronised monitoring of the cardiac cycle and retinal blood flow dynamics.

View Article and Find Full Text PDF

Distinct mechanisms control the specific synaptic functions of Neuroligin 1 and Neuroligin 2.

EMBO Rep

January 2025

Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.

Neuroligins are postsynaptic cell-adhesion molecules that regulate synaptic function with a remarkable isoform specificity. Although Nlgn1 and Nlgn2 are highly homologous and biochemically interact with the same extra- and intracellular proteins, Nlgn1 selectively functions in excitatory synapses whereas Nlgn2 functions in inhibitory synapses. How this excitatory/inhibitory (E/I) specificity arises is unknown.

View Article and Find Full Text PDF

Dissecting Sequence-Structure-Function-Diversity in Plant Cryptochromes.

Plant Sci

December 2024

Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, WB, India. Electronic address:

Ubiquitous to every stratum of life, cryptochromes regulate numerous light dependent functions in terrestrial plants. These include light-dependent transcription, circadian rhythm, inhibition of hypocotyl elongation, programmed cell death, promotion of floral initiation, mediation of gravitropic response, responding to biotic and abiotic stress etc. There have been quite a few seminal reviews including on plant cryptochromes, focusing mostly on the detailed functional aspects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!