The cis-regulatory elements encoded in an mRNA determine its stability and translational output. While there has been a considerable effort to understand the factors driving mRNA stability, the regulatory frameworks governing translational control remain more elusive. We have developed a novel massively parallel reporter assay (MPRA) to measure mRNA translation, named Nascent Peptide Translating Ribosome Affinity Purification (NaP-TRAP). NaP-TRAP measures translation in a frame-specific manner through the immunocapture of epitope tagged nascent peptides of reporter mRNAs. We benchmark NaP-TRAP to polysome profiling and use it to quantify Kozak strength and the regulatory landscapes of 5' UTRs in the developing zebrafish embryo and in human cells. Through this approach we identified general and developmentally dynamic cis-regulatory elements, as well as potential trans-acting proteins. We find that U-rich motifs are general enhancers, and upstream ORFs and GC-rich motifs are global repressors of translation. We also observe a translational switch during the maternal-to-zygotic transition, where C-rich motifs shift from repressors to prominent activators of translation. Conversely, we show that microRNA sites in the 5' UTR repress translation following the zygotic expression of miR-430. Together these results demonstrate that NaP-TRAP is a versatile, accessible, and powerful method to decode the regulatory functions of UTRs across different systems.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-024-55274-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685710PMC

Publication Analysis

Top Keywords

cis-regulatory elements
8
translation
6
nap-trap
5
nap-trap reveals
4
regulatory
4
reveals regulatory
4
regulatory grammar
4
grammar 5'utr-mediated
4
5'utr-mediated translation
4
translation regulation
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Lawrence Chen Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.

Background: Abnormal tau protein accumulation selectively affects distinct brain regions and specific neuron and glia populations in tau-related dementias like Alzheimer's disease (AD), frontotemporal dementia (FTD, Pick's disease type), and Progressive supranuclear palsy (PSP). The regulatory mechanisms governing cell-type vulnerability remain unclear.

Method: In a cross-disorder single-nucleus analysis, we examined 663,896 nuclei, assessing chromatin accessibility in three brain regions (motor cortex, visual cortex and insular cortex) across PSP, AD, and FTD in 40 individuals.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD), characterized by tau lesions and amyloid plaques, has traditionally been investigated within the cortical domain. Recent neuroimaging studies have implicated micro- and macrostructural abnormalities in cortical layers during the progression of AD. While examinations from diverse brain regions have contributed to comprehending the regional severity, these approaches have constrained the ability to delineate cortical alterations in AD.

View Article and Find Full Text PDF

Background: RNA editing represents one of the most common post-transcriptional modifications that contribute to transcriptomic diversity, impacting RNA stability and regulations. To this end, we sought to investigate brain region-specific RNA-editing signatures (RNA-editings) associated with Alzheimer's disease (AD) and the human aged brain with regulatory elements.

Method: We investigated the genome-wide landscape of RNA-editings from 4,208 (1,364 AD case vs.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Northwestern University, Chicago, IL, USA.

Background: Much attention has been paid to the role of the perenchymal brain immune response in Alzheimer's disease (AD). Yet, the peripheral immune system in AD has not been thoroughly studied with modern sequencing methods.

Method: Here, we used a combination of single-cell sequencing strategies, including assay for transposase-accessible chromatin and RNA sequencing, to investigate the epigenetic and transcriptional alterations to the AD peripheral immune system.

View Article and Find Full Text PDF

The Arabidopsis Knotted1-like homeobox (KNOX) gene SHOOT MERISTEMLESS (STM) encodes a homeodomain transcription factor that operates as a central component of the gene regulatory network (GRN) controlling shoot apical meristem formation and maintenance. It regulates the expression of target genes that include transcriptional regulators associated with meristem function, particularly those involved in pluripotency and cellular differentiation, as well as genes involved in hormone metabolism and signaling. Previous studies have identified KNOX-regulated genes and their associated cis-regulatory elements in several plant species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!