AI Article Synopsis

  • The study investigates how gut microbial metabolites (GMM), specifically phenylacetylglutamine (PAGln), are linked to cardiovascular diseases (CVD) in people with alcohol use disorder.
  • In experiments with mice, researchers found that chronic alcohol consumption led to changes in gut microbes and increased PAGln levels, which were associated with cardiovascular issues.
  • PAGln was shown to cause heart and blood vessel problems independent of alcohol, indicating that it plays a significant role in the development of CVD related to alcohol consumption.

Article Abstract

The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology. Fecal microbiota transplantation from pair-/alcohol-fed mice into naïve male mice demonstrates the transmissibility of PAGln production and the CVD phenotype. Independent of alcohol exposure, pharmacological-mediated increases in PAGln elicits direct cardiac and vascular dysfunction. PAGln induced hypercontractility and altered calcium cycling in isolated cardiomyocytes providing evidence of improper relaxation which corresponds to elevated filling pressures observed in vivo. Furthermore, PAGln directly induces vascular endothelial cell activation through induction of oxidative stress leading to endothelial cell dysfunction. We thus reveal that the alcohol-induced microbial reorganization and resultant GMM elevation, specifically PAGln, directly contributes to CVD.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-024-55084-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685538PMC

Publication Analysis

Top Keywords

gut microbial
12
microbial reorganization
12
cardiovascular disease
8
elevation pagln
8
pagln directly
8
endothelial cell
8
pagln
7
alcohol-induced gut
4
microbial
4
reorganization associated
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Medicine, Duke University, Durham, NC, USA.

Background: The GI tract is home to approximately 70% of the body's immune cells, >100 million enteric neurons, and ∼40 trillion bacteria. This co-localization of myriad immune, neural and bacterial cells creates complex interactions that regulate almost every tissue in the body, including the brain. Importantly, peripheral and GI inflammation occur in neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer (AD) contributing to gut brain axis.

View Article and Find Full Text PDF

Background: Several studies have found that oral and gut microbiome and their byproducts can impact Alzheimer's Disease (AD). The objective of our study is to analyze metagenomic sequencing data from paired oral and fecal microbiomes, along with clinical variables, to identify communities of bacteria associated with AD. This research aims to improve our understanding of the microbiome community matrix, and how these communities interact and correlate with AD status compared to healthy controls (HC) through an oral-gut microbial axis.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.

Background: Thalassemia is a hereditary disease with impaired red blood cell production, resulting in cumulative systemic iron burden. The life-long therapeutic blood transfusion with or without iron chelators in those patients leads to the development of early-onset neurocognitive decline. However, the effects of regularity of blood transfusion on the severity of iron burden, cognitive decline, and gut dysbiosis in thalassemia patients are still unclear.

View Article and Find Full Text PDF

Background: In Alzheimer's disease (AD), changes in intestinal microbiota and systemic inflammation are concomitant with neuroinflammation and cognitive decline. This has led to the theory of microbial communities or infections as being causative in the development of neuroinflammation and immunosenescence seen in AD. Our research has demonstrated a decreased taxonomic diversity and an increased abundance of pathobionts in the gut of AD patients (Haran, mBio 2019), which is sufficient to promote amyloid and tau deposition in a mouse model (Chen, Gut 2023).

View Article and Find Full Text PDF

Background: Studies using Alzheimer's disease (AD) models suggest that gut bacteria contribute to amyloid pathology and systemic inflammation. Further, gut-derived metabolites serve critical roles in regulating cholesterol, blood-brain barrier permeability, neuroinflammation, and circadian rhythms. Recent studies from the Alzheimer's Disease Neuroimaging Initiative have shown that serum-based gut-derived metabolites are associated with AD biomarkers and cognitive impairment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!