The hybrid skin-topological effect (HSTE) has recently been proposed as a mechanism where topological edge states collapse into corner states under the influence of the non-Hermitian skin effect (NHSE). However, directly observing this effect is challenging due to the complex frequencies of eigenmodes. In this study, we experimentally observe HSTE corner states using synthetic complex frequency excitations in a transmission line network. We demonstrate that HSTE induces asymmetric transmission along a specific direction within the topological band gap. Besides HSTE, we identify corner states originating from non-chiral edge states, which are caused by the unbalanced effective onsite energy shifts at the boundaries of the network. Furthermore, our results suggest that whether the bulk interior is Hermitian or non-Hermitian is not a key factor for HSTE. Instead, the HSTE states can be realized and relocated simply by adjusting the non-Hermitian distribution at the boundaries. Our research has deepened the understanding of a range of issues regarding HSTE, paving the way for advancements in the design of non-Hermitian topological devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686033PMC
http://dx.doi.org/10.1038/s41467-024-55218-6DOI Listing

Publication Analysis

Top Keywords

corner states
12
hybrid skin-topological
8
synthetic complex
8
complex frequencies
8
edge states
8
hste
7
states
6
observation non-hermitian
4
non-hermitian boundary
4
boundary induced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!