Secondary lymphedema is a common sequel of oncologic surgery and presents a global health burden still lacking pharmacological treatment. The infiltration of the lymphedematous extremities with CD4T cells influences lymphedema onset and emerges as a promising therapy target. Here, we show that the modulation of CD4FOXP3CD25regulatory T (T) cells upon anti-CTLA4 treatment protects against lymphedema development in patients with melanoma and in a mouse lymphedema model. A retrospective evaluation of a melanoma patient registry reveals that anti-CTLA4 reduces lymphedema risk; in parallel, anti-CTLA4 reduces edema and improves lymphatic function in a mouse-tail lymphedema model. This protective effect of anti-CTLA4 correlates with a systemic expansion of Tregs, both in the animal model and in patients with melanoma. Our data thus show that anti-CTLA4 with its lymphedema-protective and anti-tumor properties is a promising candidate for more diverse application in the clinics.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-024-55002-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686037PMC

Publication Analysis

Top Keywords

anti-ctla4 treatment
8
reduces lymphedema
8
lymphedema risk
8
systemic expansion
8
patients melanoma
8
lymphedema model
8
anti-ctla4 reduces
8
lymphedema
7
anti-ctla4
6
treatment reduces
4

Similar Publications

Secondary lymphedema is a common sequel of oncologic surgery and presents a global health burden still lacking pharmacological treatment. The infiltration of the lymphedematous extremities with CD4T cells influences lymphedema onset and emerges as a promising therapy target. Here, we show that the modulation of CD4FOXP3CD25regulatory T (T) cells upon anti-CTLA4 treatment protects against lymphedema development in patients with melanoma and in a mouse lymphedema model.

View Article and Find Full Text PDF

Advances in cancer treatments have significantly improved their effectiveness, yet access to first-line therapies remains limited. A 2017 survey revealed that over 25 % of metastatic melanoma patients in Europe lacked access to recommended therapies. To address this, the European Association of Dermato-Oncology and the European Melanoma Registry conducted a follow-up study on the registration and reimbursement of first-line treatments.

View Article and Find Full Text PDF

Berberine Derivative B68 Promotes Tumor Immune Clearance by Dual-Targeting BMI1 for Senescence Induction and CSN5 for PD-L1 Degradation.

Adv Sci (Weinh)

December 2024

Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.

Promoting tumor cell senescence arrests the cell cycle of tumor cells and activates the immune system to eliminate these senescent cells, thereby suppressing tumor growth. Nevertheless, PD-L1 positive senescent tumor cells resist immune clearance and possess the ability to secret various cytokines and inflammatory factors that stimulate the growth of tumor cells. Consequently, drugs capable of both triggering senescence in tumor cells and concurrently diminishing the expression of PD-L1 to counteract immune evasion are urgently needed.

View Article and Find Full Text PDF

Mertansine (DM1), a potent tumor-killing maytansinoid, requires conjugation to antibodies or incorporation into nanocarriers due to its high toxicity. However, these carriers often result in undesirable biodistribution, leading to rapid and long-term accumulation in the kidneys or liver and potentially increased toxicity. To overcome this limitation, we used the hydrophilic, biocompatible, and stealth properties of polyacrylamide (PAAm) as a scaffold to develop water-soluble PAAm-DM1 polymer prodrugs, leveraging PAAm's previous success in delivering paclitaxel via subcutaneous administration.

View Article and Find Full Text PDF

Cancer progression is an evolutionary process driven by the selection of cells adapted to gain growth advantage. We present a formal study on the adaptation of gene expression in subclonal evolution. We model evolutionary changes in gene expression as stochastic Ornstein-Uhlenbeck processes, jointly leveraging the evolutionary history of subclones and single-cell expression data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!