Phononic modulation of spin-lattice relaxation in molecular qubit frameworks.

Nat Commun

Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China.

Published: December 2024

The solid-state integration of molecular electron spin qubits could promote the advancement of molecular quantum information science. With highly ordered structures and rational designability, microporous framework materials offer ideal matrices to host qubits. They exhibit tunable phonon dispersion relations and spin distributions, enabling optimization of essential qubit properties including the spin-lattice relaxation time (T) and decoherence time. In this study, through spin dynamic and vibrational spectroscopic characterizations of two radical-embedded framework materials, we show that hydrogen-bonded networks give rise to a low Debye temperature of acoustic phonons and generates sub-terahertz optical phonons, both of which facilitate spin-lattice relaxation. Whereas deuterating hydrogen-bonded networks reduces both phonon frequencies and T, eliminating such flexible structural motifs raises phonon dispersions and improves the T by one to two orders of magnitude. The phononic tunability of spin-lattice relaxation in molecular qubit frameworks would facilitate the development of solid-state qubits operating at elevated temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-024-54989-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685587PMC

Publication Analysis

Top Keywords

spin-lattice relaxation
16
relaxation molecular
8
molecular qubit
8
qubit frameworks
8
framework materials
8
hydrogen-bonded networks
8
phononic modulation
4
spin-lattice
4
modulation spin-lattice
4
relaxation
4

Similar Publications

Time evolution of a pumped molecular magnet-A time-resolved inelastic neutron scattering study.

Proc Natl Acad Sci U S A

January 2025

William H. Miller III Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218.

Introducing an experimental technique of time-resolved inelastic neutron scattering (TRINS), we explore the time-dependent effects of resonant pulsed microwaves on the molecular magnet CrFPiv. The octagonal rings of magnetic Cr atoms with antiferromagnetic interactions form a singlet ground state with a weakly split triplet of excitations at 0.8 meV.

View Article and Find Full Text PDF

Phononic modulation of spin-lattice relaxation in molecular qubit frameworks.

Nat Commun

December 2024

Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China.

The solid-state integration of molecular electron spin qubits could promote the advancement of molecular quantum information science. With highly ordered structures and rational designability, microporous framework materials offer ideal matrices to host qubits. They exhibit tunable phonon dispersion relations and spin distributions, enabling optimization of essential qubit properties including the spin-lattice relaxation time (T) and decoherence time.

View Article and Find Full Text PDF

Spectroscopic Signatures of Phonon Character in Molecular Electron Spin Relaxation.

ACS Cent Sci

December 2024

Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.

Spin-lattice relaxation constitutes a key challenge for the development of quantum technologies, as it destroys superpositions in molecular quantum bits (qubits) and magnetic memory in single molecule magnets (SMMs). Gaining mechanistic insight into the spin relaxation process has proven challenging owing to a lack of spectroscopic observables and contradictions among theoretical models. Here, we use pulse electron paramagnetic resonance (EPR) to profile changes in spin relaxation rates ( ) as a function of both temperature and magnetic field orientation, forming a two-dimensional data matrix.

View Article and Find Full Text PDF

Purpose: To implement and evaluate the feasibility of brain spin-lattice relaxation in the rotating frame (T1ρ) mapping using a novel optimized pulse sequence that incorporates weighted spin-lock acquisitions, enabling high-resolution three-dimensional (3D) mapping.

Methods: The optimized variable flip-angle framework, previously proposed for knee T1ρ mapping, was enhanced by integrating weighted spin-lock acquisitions. This strategic combination significantly boosts signal-to-noise ratio (SNR) while reducing data acquisition time, facilitating high-resolution 3D-T1ρ mapping of the brain.

View Article and Find Full Text PDF

H and F spin-lattice relaxation experiments have been performed for a series of ionic liquids: [HMIM][TFSI], [OMIM][TFSI], and [DMIM][TFSI] including the same anion and cations with progressively longer alkyl chains. The experiments were performed in a wide frequency range from 10 kHz to 10 MHz (referring to the H resonance frequency) versus temperature. This extensive data set has been analyzed in terms of a theoretical model including all relevant homonuclear (H-H and F-F) and heteronuclear (H-F) relaxation pathways and linking the relaxation features to the relative translational diffusion between the ion pairs (cation-cation, cation-anion, and anion-anion).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!