Clade 2.3.4.4b H5N1 is causing an unprecedented outbreak in dairy cows in the United States. To understand if recent H5N1 viruses are changing their receptor use, we screened recombinant hemagglutinin (HA) from historical and recent 2.3.4.4b H5N1 viruses for binding to distinct glycans bearing terminal sialic acids using a glycan microarray. We find that H5 from A/Texas/37/2024, an isolate from the dairy cow outbreak, has increased binding breadth to core glycans bearing terminal α2,3 sialic acids, the avian receptor, compared to historical and recent 2.3.4.4b H5N1 viruses. We do not observe any binding to α2,6 sialic acids, the receptor used by human seasonal influenza viruses. Using molecular dynamics and a cryo-EM structure of A/Texas/37/2024 H5, we show A/Texas/37/2024 H5 is more flexible within the receptor-binding site compared to a 2.3.4.4b H5 from 2022. We identify a single mutation outside of the receptor binding site, T199I, is responsible for increased binding breadth, as it increases receptor binding site flexibility. Together, these data show recent H5N1 viruses are evolving increased receptor binding breadth which could impact the host range and cell types infected with H5N1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41467-024-54934-3 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685663 | PMC |
The current situation with H5N1 highly pathogenic avian influenza virus (HPAI) is causing a worldwide concern due to multiple outbreaks in wild birds, poultry, and mammals. Moreover, multiple zoonotic infections in humans have been reported. Importantly, HPAI H5N1 viruses with genetic markers of adaptation to mammals have been detected.
View Article and Find Full Text PDFEmerg Microbes Infect
January 2025
Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland.
Highly pathogenic avian influenza (HPAI) H5N1 is known for its virulence and zoonotic potential, infecting birds and mammals, thus raising public health concerns. Since 2021 its spread among birds has led to cross-species transmission causing epizootics among mammals, eventually impacting fur animal farms in Finland in 2023. To analyze the infectivity of the Finnish H5N1 isolates in human cells, representatives of diverse H5N1 isolates were selected based on the genetic differences, host animal species, and the year of occurrence.
View Article and Find Full Text PDFN Engl J Med
December 2024
From the Influenza Division, Centers for Disease Control and Prevention, Atlanta (S.G., K.R., A.C., K.K., C.T.D., M.K.K., S. Ellington, A.M.M., A.B., J.R.B., M.B., M.A.J., M.R.-C., E.B., T.T.S., T.M.U., V.G.D., C.R., S.J.O.); California Department of Public Health, Richmond (E.L.M., S.Z., V.K., D.A.W.); the Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta (S.Z., C.D.); Colorado Department of Public Health and Environment, Denver (C.D., A.K., M.O.); Mid-Michigan District Health Department, Stanton (J.M.); Michigan Department of Health and Human Services, Lansing (S. Eckel); Missouri Department of Health and Senior Services, Jefferson City (J.G., G.T.); Benton-Franklin Health District, Kennewick, WA (S.K.); Washington State Department of Health, Tumwater (A.U.); and Texas Department of State Health Services, Austin (E.R.G., C.A.H.).
Background: Highly pathogenic avian influenza A(H5N1) viruses have caused widespread infections in dairy cows and poultry in the United States, with sporadic human cases. We describe characteristics of human A(H5N1) cases identified from March through October 2024 in the United States.
Methods: We analyzed data from persons with laboratory-confirmed A(H5N1) virus infection using a standardized case-report form linked to laboratory results from the Centers for Disease Control and Prevention influenza A/H5 subtyping kit.
Nat Commun
December 2024
Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
Clade 2.3.4.
View Article and Find Full Text PDFOpen Vet J
November 2024
Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt.
Background: Highly pathogenic avian influenza (HPAI) (H5N1) has been endemic in Egypt for almost two decades, profoundly impacting both the poultry industry and public health. Egypt stands as a prominent epicenter for HPAI H5N1 outbreaks in Africa, marked by the highest number of positive human cases. Despite continuous governmental efforts, prior research underscored the inadequacy of strategies in controlling the virus spread.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!