AAV vectors show promise for gene therapy; however, kidney gene transfer remains challenging. Here we conduct a barcode-seq-based comparison of 47 AAV capsids administered through different routes in mice, followed by individual validation. We find that local delivery of AAV-KP1, but not AAV9, via the renal vein or pelvis effectively transduces proximal tubules with minimal off-target liver transduction, while systemic AAV9, but not AAV-KP1, enhances proximal tubule and podocyte transduction in chronic kidney disease. We demonstrate that these contrasting observations are partly due to differences in their pharmacokinetics. Importantly, we show that renal pelvis injection overcomes pre-existing immunity, leading to robust and exclusive proximal tubule transduction, in non-human primates (NHPs). In addition, we highlight drastic differences in renal transduction profiles between mice and NHPs. Thus, this study provides mechanistic insights and underscores importance of context-dependent selection of AAV capsids to overcome challenges in gene delivery to the kidney.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-024-54475-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685967PMC

Publication Analysis

Top Keywords

aav capsids
12
gene transfer
8
context-dependent selection
8
selection aav
8
proximal tubule
8
enhancing gene
4
renal
4
transfer renal
4
renal tubules
4
tubules podocytes
4

Similar Publications

Background: A recent study of familial Alzheimer's disease identified a mutation in the RELN gene that appeared to delay the onset of dementia. It was hypothesized that this RELN-COLBOS variant protected against dementia by enhanced signaling at reelin receptors. We previously developed a secreted, bio-active reelin fragment (R36) and packaged it into AAV.

View Article and Find Full Text PDF

Purpose: This study aimed to identify a novel recombinant adeno-associated virus (rAAV) capsid variant that can widely transfect the deep retina through intravitreal injection and to assess their effectiveness and safety in gene delivery.

Methods: By adopting the sequences of various cell-penetrating peptides and inserting them into the capsid modification region of AAV2, we generated several novel variants. The green fluorescent protein (GFP)-carrying variants were screened following intravitreal injection.

View Article and Find Full Text PDF

Enhanced Discriminability of Viral Vectors in Viscous Nanopores.

Small Methods

January 2025

Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.

Achieving safe and efficient gene therapy hinges upon the inspection of genomes enclosed within individual nano-carriers to mitigate potential health risks associated with empty or fragment-filled vectors. Here solid-state nanopore sensing is reported for identifications of intermediate adeno-associated virus (AAV) vectors in liquid. The method exploits the phenomenon of translocation slowdown induced by the viscosity of salt water-organic mixtures.

View Article and Find Full Text PDF

AAV vectors show promise for gene therapy; however, kidney gene transfer remains challenging. Here we conduct a barcode-seq-based comparison of 47 AAV capsids administered through different routes in mice, followed by individual validation. We find that local delivery of AAV-KP1, but not AAV9, via the renal vein or pelvis effectively transduces proximal tubules with minimal off-target liver transduction, while systemic AAV9, but not AAV-KP1, enhances proximal tubule and podocyte transduction in chronic kidney disease.

View Article and Find Full Text PDF

AAV2-mediated ABD-FGF21 gene delivery produces a sustained anti-hyperglycemic effect in type 2 diabetic mouse.

Life Sci

December 2024

College of Medicine and Health Sciences, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China. Electronic address:

Background: Fibroblast Growth Factor 21 (FGF21) is a naturally occurring peptide hormone involved in the regulation of glycolipid metabolism, and it shows promise as a potential treatment for type 2 diabetes mellitus (T2DM). However, the short half-life and poor pharmacokinetics of native FGF21 limit its efficacy in reducing hyperglycemia in vivo. Therefore, maintaining stable and sustained blood concentrations of FGF21 is crucial for its role as an effective regulator of glycolipid metabolism in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!