Concurrent superconductivity and negative photoconductivity (NPC) are rarely observed. Here, the discovery in PbSeTe of superconductivity and photoconductivity transitions between positive photoconductivity (PPC) and NPC during compression is reported to ≈40 GPa and subsequent decompression, which are also accompanied by reversible structure transitions (3D Fm m ⇌ 2D Pnma ⇌ 3D Pm m). Superconductivity with a maximum T of ≈6.7 K coincides with NPC and structure transition of Pnma to Pm m at ≈18 GPa and the latter phase is preserved down to ≈5 GPa with enhanced T of ≈6.9 K during decompression. The observations imply the simultaneous superconducting and photoconductive transitions are closely related to the metallic Pm m phase. First-principles calculations suggest the enhanced p-p hybridization and charge transfer between Pb-5p and ligand-p orbitals near the Fermi surface play key roles in electron-phonon interaction of mediating the Cooper pairs in PbSeTe. Hall coefficient measurements reveal that photothermal effect enhances electron-phonon interplay, which decreases carrier concentration and mobility and results in the reversal of PPC-NPC. Structure-dependent superconductivity and NPC are jointly mediated by electron-phonon interplay, which is tunable through illumination or cooling at high-pressure. The findings shed light on the origin of superconductive and photoconductive transitions in versatile materials of lead chalcogenides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202417597 | DOI Listing |
Adv Mater
December 2024
Academy for Advanced Interdisciplinary Studies and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.
Concurrent superconductivity and negative photoconductivity (NPC) are rarely observed. Here, the discovery in PbSeTe of superconductivity and photoconductivity transitions between positive photoconductivity (PPC) and NPC during compression is reported to ≈40 GPa and subsequent decompression, which are also accompanied by reversible structure transitions (3D Fm m ⇌ 2D Pnma ⇌ 3D Pm m). Superconductivity with a maximum T of ≈6.
View Article and Find Full Text PDFNat Nanotechnol
October 2024
Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.
Light incident upon materials can induce changes in their electrical conductivity, a phenomenon referred to as photoresistance. In semiconductors, the photoresistance is negative, as light-induced promotion of electrons across the bandgap enhances the number of charge carriers participating in transport. In superconductors and normal metals, the photoresistance is positive because of the destruction of the superconducting state and enhanced momentum-relaxing scattering, respectively.
View Article and Find Full Text PDFPhys Rev Lett
February 2024
Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France.
The normal-state conductivity and superconducting critical temperature of oxygen-deficient YBa_{2}Cu_{3}O_{7-δ} can be persistently enhanced by illumination. Strongly debated for years, the origin of those effects-termed persistent photoconductivity and photosuperconductivity (PPS)-has remained an unsolved critical problem, whose comprehension may provide key insights to harness the origin of high-temperature superconductivity itself. Here, we make essential steps toward understanding PPS.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2024
School of Physics, Beihang University, Beijing 100191, P. R. China.
Precise control of charge carrier type and density of two-dimensional (2D) ambipolar semiconductors is the prerequisite for their applications in next-generation integrated circuits and electronic devices. Here, by fabricating a heterointerface between a 2D ambipolar semiconductor (hydrogenated germanene, GeH) and a ferroelectric substrate (PbMgNbO-PbTiO, PMN-PT), fine-tuning of charge carrier type and density of GeH is achieved. Due to ambipolar properties, proper band gap, and high carrier mobility of GeH, by applying the opposite local bias (±8 V), a lateral polarization in GeH is constructed with a change of work function by 0.
View Article and Find Full Text PDFNat Commun
November 2023
Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany.
Optically driven quantum materials exhibit a variety of non-equilibrium functional phenomena, which to date have been primarily studied with ultrafast optical, X-Ray and photo-emission spectroscopy. However, little has been done to characterize their transient electrical responses, which are directly associated with the functionality of these materials. Especially interesting are linear and nonlinear current-voltage characteristics at frequencies below 1 THz, which are not easily measured at picosecond temporal resolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!