A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

microT-CNN: an avant-garde deep convolutional neural network unravels functional miRNA targets beyond canonical sites. | LitMetric

microRNAs (miRNAs) are central post-transcriptional gene expression regulators in healthy and diseased states. Despite decades of effort, deciphering miRNA targets remains challenging, leading to an incomplete miRNA interactome and partially elucidated miRNA functions. Here, we introduce microT-CNN, an avant-garde deep convolutional neural network model that moves the needle by integrating hundreds of tissue-matched (in-)direct experiments from 26 distinct cell types, corresponding to a unique training and evaluation set of >60 000 miRNA binding events and ~30 000 unique miRNA-gene target pairs. The multilayer sequence-based design enables the prediction of both host and virus-encoded miRNA interactions, providing for the first time up to 67% of direct genuine Epstein-Barr virus- and Kaposi's sarcoma-associated herpesvirus-derived miRNA-target pairs corresponding to one out of four binding events of virus-encoded miRNAs. microT-CNN fills the existing gap of the miRNA-target prediction by providing functional targets beyond the canonical sites, including 3' compensatory miRNA pairings, prompting 1.4-fold more validated miRNA binding events compared to other implementations and shedding light on previously unexplored facets of the miRNA interactome.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbae678DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685103PMC

Publication Analysis

Top Keywords

binding events
12
mirna
9
microt-cnn avant-garde
8
avant-garde deep
8
deep convolutional
8
convolutional neural
8
neural network
8
mirna targets
8
targets canonical
8
canonical sites
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!