A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Precise identification of somatic and germline variants in the absence of matched normal samples. | LitMetric

Somatic variants play a crucial role in the occurrence and progression of cancer. However, in the absence of matched normal controls, distinguishing between germline and somatic variants becomes challenging in tumor samples. The existing tumor-only genomic analysis methods either suffer from limited performance or insufficient interpretability due to an excess of features. Therefore, there is an urgent need for an alternative approach that can address these issues and have practical implications. Here, we presented OncoTOP, a computational method for genomic analysis without matched normal samples, which can accurately distinguish somatic mutations from germline variants. Reference sample analysis revealed a 0% false positive rate and 99.7% reproducibility for variant calling. Assessing 2864 tumor samples across 18 cancer types yielded a 99.8% overall positive percent agreement and a 99.9% positive predictive value. OncoTOP can also accurately detect clinically actionable variants and subclonal mutations associated with drug resistance. For the prediction of mutation origins, the positive percent agreement stood at 97.4% for predicting somatic mutations and 95.7% for germline mutations. High consistency of tumor mutational burden (TMB) was observed between the results generated by OncoTOP and tumor-normal paired analysis. In a cohort of 97 lung cancer patients treated with immunotherapy, TMB-high patients had prolonged PFS (P = .02), proving the reliability of our approach in estimating TMB to predict therapy response. Furthermore, microsatellite instability status showed a strong concordance (97%) with polymerase chain reaction results, and leukocyte antigens class I subtypes and homozygosity achieved an impressive concordance rate of 99.3% and 99.9% respectively, compared to its tumor-normal paired analysis. Thus, OncoTOP exhibited high reliability in variant calling, mutation origin prediction, and biomarker estimation. Its application will promise substantial advantages for clinical genomic testing.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbae677DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684894PMC

Publication Analysis

Top Keywords

matched normal
12
germline variants
8
absence matched
8
normal samples
8
somatic variants
8
tumor samples
8
genomic analysis
8
somatic mutations
8
variant calling
8
positive percent
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!