Aqueous-phase phosphors are of utmost importance for a myriad of applications. However, the emission wavelengths of the current aqueous organic room-temperature phosphorescent (RTP) materials are limited to green and red bands, while the blue part is rarely reported, thus limiting the development of a full-color RTP system. Theoretically, carboxylated benzene is expected to be blue phosphorescence-emissive, but only green phosphorescence is observed in solid, due to the strong intermolecular π-π stacking that decreases the energy gap. Herein, the use of water-dispersible layered double hydroxide (ZnAl-LDH) is proposed for isolating Ph-(COOH) and the distance between the adjacent chromophores is confirmed to be larger (≈7.0 Å) than the threshold of π-π interaction. Deep-blue phosphorescence with a lifetime over 0.1 s, and a maximum luminescence quantum yield of 42%, is harvested in the aqueous phase. The long-lived deep-blue phosphorescence is successfully explored for high-temperature display and luminescent dyes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.202413896DOI Listing

Publication Analysis

Top Keywords

deep-blue phosphorescence
12
aqueous phase
8
phase long-lived
8
long-lived deep-blue
8
layered double
8
double hydroxide
8
enabling aqueous
4
phosphorescence
4
phosphorescence layered
4
hydroxide aqueous-phase
4

Similar Publications

High Efficiency and Narrow Emissions in Deep-Blue Pt(II) Emitters in Organic Light-Emitting Diodes via Anchor-Shaped Substituent Design.

ACS Appl Mater Interfaces

January 2025

School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.

In this study, a tetradentate Pt(II) complex designed to have -heterocyclic carbene ligands modified with an anchor-shaped 2,6-diisopropylphenyl (dip) group is described to enhance molecular rigidity for narrow emission and high efficiency. The tetradentate ligand with the dip group significantly hinders steric interactions and restricts π-conjugation from benzocarbene, leading to shallow lowest unoccupied molecular orbital levels and a consequent reduction in the triplet metal-to-ligand charge transfer character. These structural modifications result in narrow emission spectra and enhanced efficiency for blue organic light-emitting diodes (OLEDs) over wide doping concentration ranges.

View Article and Find Full Text PDF

Aqueous-phase phosphors are of utmost importance for a myriad of applications. However, the emission wavelengths of the current aqueous organic room-temperature phosphorescent (RTP) materials are limited to green and red bands, while the blue part is rarely reported, thus limiting the development of a full-color RTP system. Theoretically, carboxylated benzene is expected to be blue phosphorescence-emissive, but only green phosphorescence is observed in solid, due to the strong intermolecular π-π stacking that decreases the energy gap.

View Article and Find Full Text PDF

Efficient and Stable Deep-Blue 0D Copper-Based Halide TEACuI with Near-Unity Photoluminescence Quantum Yield for Light-Emitting Diodes.

Nanomaterials (Basel)

November 2024

Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

Achieving deep-blue light with high color saturation remains a critical challenge in the development of white light-emitting diode (LED) technology, necessitating luminescent materials that excel in efficiency, low toxicity, and stability. Here, we report the synthesis of [N(CH)]CuI (TEACuI) single crystals (SCs), which exhibit deep-blue photoluminescence (PL) at 450 nm. These crystals are characterized by a significant Stokes shift of 180 nm, a long lifetime of 1.

View Article and Find Full Text PDF

It is a great challenge to manufacture room-temperature blue long afterglow phosphorescent materials adapted to environmental conditions. Herein, an Na-based metal-organic framework (MOF) was constructed using Na and 1H-1,2,4-triazole-3,5-dicarboxylic acid, which exhibits long-lived of 378.9 ms, deep blue and room-temperature phosphorescence, meanwhile possesses the visible blue afterglow for 3~6 seconds after removing excitation light source.

View Article and Find Full Text PDF

Intrinsic Narrowband Blue Phosphorescent Materials and Their Applications in 3D Printed Self-monitoring Microfluidic Chips.

Adv Mater

December 2024

Frontiers Science Center for Flexible Electronics (FSCFE) and Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.

Organic room-temperature phosphorescent (RTP) materials, especially with narrowband emission properties, exhibit great potential for applications in display and sensing, but have been seldom reported. Herein, a rare example of the intrinsic narrowband blue RTP material is fabricated and reported. A series of indolo[3,2,1-kl]phenothiazine derivatives, named Cphpz, 1O-Cphpz, and 2O-Cphpz, are designed and synthesized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!