Background And Objectives: Airway fungal infection is a severe clinical problem, especially in patients with compromised immune functions. Here, we examined the distribution and antifungal susceptibility profiles of fungal agents isolated from respiratory tract of symptomatic patients hospitalized in pulmonary units.

Materials And Methods: This descriptive cross-sectional study took place from 2023 to 2024, involving 360 patients. Bronchoalveolar lavage (BAL) or sputum specimens were collected and analyzed using mycological and molecular methods for this study. Antifungal susceptibility testing (AFST) was carried out using the broth micro dilution method.

Results: Of a total of 360 respiratory specimens, 114 (31.6%) were positive. The male-to-female ratio was 63:51 (1.3%). and were the most common yeast and mold species. Chronic obstructive pulmonary disease (COPD) had the highest rate of colonization with fungal agents (47/114, 41%). The isolates associated with COPD in this study included species (4/12, 3.5%), species (41/96, 36%), and other fungal species (2/6, 1.5%). Coughing (87%) was the predominant symptom, and malignancy (52%) was the predominant comorbidity factor. The result of AFST for antifungal agents showed that 9 (22.5%) isolates were resistant, and the highest rate of resistance was related to voriconazole agent (5/9, 55.5%). Resistance to antifungal agents was not observed among isolates.

Conclusion: This study showed a significant relationship between the frequency of and species in patients with underlying lung diseases. In addition, voriconazole was more effective than itraconazole, especially against

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682555PMC
http://dx.doi.org/10.18502/ijm.v16i6.17258DOI Listing

Publication Analysis

Top Keywords

fungal agents
12
antifungal susceptibility
12
patients underlying
8
underlying lung
8
lung diseases
8
susceptibility profiles
8
highest rate
8
antifungal agents
8
agents
5
patients
5

Similar Publications

A Comprehensive Review on Exploring the Potential of Phytochemicals and Biogenic Nanoparticles for the Treatment of Antimicrobial-Resistant Pathogenic Bacteria.

Curr Microbiol

January 2025

Molecular Biology Laboratory, Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India.

Antimicrobial resistance (AMR) is an escalating global health concern that results in approximately 700,000 deaths annually owing to drug-resistant infections. It compromises the effectiveness of conventional antibiotics, as well as fundamental medical procedures, such as surgery and cancer treatment. Phytochemicals, natural plant constituents, and biogenic nanoparticles synthesized through biological processes are pharmacological alternatives for supplementing or replacing traditional antibiotics.

View Article and Find Full Text PDF

In recent years, there has been a global threat from emerging vector-borne diseases (VBD), despite the implementation of several vector control programs. Considering the benefits of bacterial pesticides, the present study aimed to isolate potential mosquitocidal bacteria from the various soil types collected from the Kasaragod (12.5°N, 75.

View Article and Find Full Text PDF

[An update of the Helicobacter pylori treatment: a Latin American Gastric Cancer, Helicobacter and Microbiota Study Group review].

Rev Gastroenterol Peru

January 2025

Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.

Helicobacter pylori (H. pylori) is the primary etiological agent of gastric adenocarcinoma, which affects over 60% of the global population, with a significant prevalence in Latin America. Given its impact on the affected population, it is crucial to understand the diagnostic tools available for detecting this infection.

View Article and Find Full Text PDF

The sulfur-related metabolic status of during infection reveals cytosolic serine hydroxymethyltransferase as a promising antifungal target.

Virulence

December 2025

Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.

Sulfur metabolism is an essential aspect of fungal physiology and pathogenicity. Fungal sulfur metabolism comprises anabolic and catabolic routes that are not well conserved in mammals, therefore is considered a promising source of prospective novel antifungal targets. To gain insight into sulfur-related metabolism during infection, we used a NanoString custom nCounter-TagSet and compared the expression of 68 key metabolic genes in different murine models of invasive pulmonary aspergillosis, at 3 time-points, and under a variety of conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!