Tropical cyclones (TCs) are catastrophic phenomena that constantly threaten populations settled in the tropics. Their direct effects (strong winds, storm surges, and intense precipitation) are confined near the TC center. On the other hand, the indirect effects are due to extreme rainfall events associated with rainbands distant from the TC center. Diverse TC-size definitions do not consider these indirect effects, although these definitions are used for disaster risk reduction strategies. Risk management based on TC size needs an appropriate definition of TC hazards for adequately planning early actions. Here, we developed two algorithms, Radius of the Outermost CLOUD (ROCLOUD) and Radius of Precipitation Band (RPB), to define outer TC sizes using the HURDAT data, GPM satellite imagery, and a radial wind profile. We analyzed 191 and 336 TCs over the North Atlantic and the Eastern North Pacific basins, respectively, during the 2000-2020 period. We create a database for outer TC sizes that presents 6-hourly information during the TC lifetime, from pre-cyclonic to decaying states. This database also provides the TC location, TC outer sizes defined by the two algorithms, and TC shape metrics (asymmetry, dispersion and solidity) every 6 h. The database is freely available in a text format at Mendeley data [1]. We present statistics for the four quadrant radii and mean radius defined by the ROCLOUD and RBP algorithms and the shape metrics. We expect this database can be useful to Early Warning Systems for Tropical Cyclones and regional risk management studies in the Middle Americas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683216 | PMC |
http://dx.doi.org/10.1016/j.dib.2024.111179 | DOI Listing |
Data Brief
December 2024
Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
Tropical cyclones (TCs) are catastrophic phenomena that constantly threaten populations settled in the tropics. Their direct effects (strong winds, storm surges, and intense precipitation) are confined near the TC center. On the other hand, the indirect effects are due to extreme rainfall events associated with rainbands distant from the TC center.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan, 430070, China. Electronic address:
Organoarsenicals are toxic pollutants of global concern, and their environmental geochemical behavior might be greatly controlled by iron (Fe) (hydr)oxides through coprecipitation, which is rarely investigated. Here, the effects of the incorporation of dimethylarsenate (DMAs(V)), a typical organoarsenical, into the ferrihydrite (Fh) structure on the mineral physicochemical properties and Fe(II)-induced phase transformation of DMAs(V)-Fh coprecipitates with As/Fe molar ratios up to 0.0876 ± 0.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Mechanical Engineering, Department of Machining, Assembly and Engineering Metrology, VSB-Technical University of Ostrava, Ostrava-Poruba, 708 00, Czech Republic.
The aim of this work is to investigate the sound absorption properties of open-porous polyamide 12 (PA12) structures produced using Selective Laser Sintering (SLS) technology. The examined 3D-printed samples, fabricated with hexagonal prism lattice structures, featured varying thicknesses, cell sizes, and orientations. Additionally, some samples were produced with an outer shell to evaluate its impact on sound absorption.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Chemistry, University of California, Berkeley, California 94720, United States.
Characterizing the size, structure, and composition of nanoparticles is vital in predicting and understanding their macroscopic properties. In this work, charge detection mass spectrometry (CDMS) was used to analyze nanocapsules (∼10-200 MDa) consisting of a liquid oleic acid core surrounded by a dense silica outer shell. CDMS is an emerging method for nanoparticle analysis that can rapidly measure the mass and charge of thousands of individual nanoparticles.
View Article and Find Full Text PDFmBio
December 2024
Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA.
Unlabelled: Bacteria have evolved diverse strategies to ensure survival under nutrient-limited conditions, where rapid energy generation is not achievable. Here, we performed a transposon insertion site sequencing loss-of-function screen to identify genes that promote pathogen fitness in stationary phase. We discovered that the aintenance of ipid symmetry (Mla) pathway, which is crucial for transferring phospholipids from the outer to the inner membrane, is critical for stationary phase fitness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!