Functional screening identifies miRNAs with a novel function inhibiting vascular smooth muscle cell proliferation.

Mol Ther

Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK; CARIM School for Cardiovascular Sciences, Department of Pathology, Maastricht University Medical Center (MUMC), 6229HX Maastricht, the Netherlands. Electronic address:

Published: December 2024

AI Article Synopsis

  • The study identifies seven microRNAs (miRNAs) that inhibit the proliferation of vascular smooth muscle cells (vSMCs), important in preventing vascular remodeling issues.
  • Through high-throughput screening of 2,042 human miRNA mimics, the researchers pinpointed miR-323a-3p, miR-449b-5p, miR-491-3p, miR-892b, miR-1827, miR-4774-3p, and miR-5681b as effective in reducing vSMC proliferation.
  • The findings suggest these miRNAs could be developed into therapeutic agents, particularly for conditions like vein graft failure, showing minimal toxicity and altering key cell-cycle gene networks involved in

Article Abstract

Proliferation of vascular smooth muscle cells (vSMCs) is a crucial contributor to pathological vascular remodeling. MicroRNAs (miRNAs) are powerful gene regulators and attractive therapeutic agents. Here, we aimed to systematically identify and characterize miRNAs with therapeutic potential in targeting vSMC proliferation. Using high-throughput screening, we assessed the impact of 2,042 human miRNA mimics on vSMC proliferation and identified seven miRNAs with novel vSMC anti-proliferative function: miR-323a-3p, miR-449b-5p, miR-491-3p, miR-892b, miR-1827, miR-4774-3p, and miR-5681b. miRNA-mimic treatment affects proliferation of vSMCs from different vascular beds. Focusing on vein graft failure, where miRNA-based therapeutics can be applied to the graft ex vivo, we showed that these miRNAs reduced human saphenous vein smooth muscle cell (HSVSMC) proliferation without toxic effect. HSVSMC transcriptomics revealed a distinct set of targets for each miRNA, leading to the common downregulation of a cell-cycle gene network for all miRNAs. For miR-449b-5p, we showed that its candidate target, CCND1, contributes to HSVSMC proliferation. In contrast to HSVSMCs, miRNA overexpression in endothelial cells led to a limited response in terms of proliferation and transcriptomics. In an ex vivo vein organ model, overexpression of miR-323a-3p and miR-449b-5p reduced medial proliferation. Collectively, the results of our study show the therapeutic potential of seven miRNAs to target pathological vascular remodeling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymthe.2024.12.037DOI Listing

Publication Analysis

Top Keywords

smooth muscle
12
proliferation
9
mirnas novel
8
vascular smooth
8
muscle cell
8
pathological vascular
8
vascular remodeling
8
therapeutic potential
8
vsmc proliferation
8
mir-323a-3p mir-449b-5p
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!