Peony-shaped zinc oxide nanoflower synthesized via hydrothermal route exhibits promising anticancer and anti-amyloid activity.

BMC Pharmacol Toxicol

Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India.

Published: December 2024

Background: Cancer is the deadliest disease, and neurological disorders are also marked as slow progressive diseases, ultimately leading to death. Stopping two mouths with one morsel was the strategy that we used in this study.

Methods: We have synthesized peony-shaped zinc oxide nanoflowers (ZnO-NFs) and characterized them using various photophysical tools like UV-vis spectroscopy, zeta potential analysis, dynamic light scattering (DLS), FTIR, and scanning electron microscopy (SEM), and utilized these nanoflowers to monitor their anticancer and anti-amyloid activity. In vitro biocompatibility was assessed using fibroblasts and undifferentiated rat phaeochromocytoma cells, and in vivo, biocompatibility was estimated using haemolysis assay and zebrafish embryo development.

Results: The results demonstrated high biocompatibility of the as-synthesized ZnO-NFs up to a dose of 200 µg/ml. In vitro anticancer activity was evaluated using adherent (A375) and non-adherent (Dalton's Lymphoma Ascites, DLA) cancer cell lines. The results indicated that the ZnO-NFs significantly killed the cancer cells in a dose-dependent way, showing an extraordinary effect on DLA cells. The anti-amyloid activity in vitro was explored using a spectrum of assays that were hallmarks in anti-amyloid studies like ThT fluorescence assay, DLS, turbidity assay, atomic force microscopy (AFM), and SEM analysis. Excellent anti-amyloid activity was observed in vitro at 50 µg/ml of ZnO-NFs.

Conclusion: We can conclude from the above results that the as-synthesized ZnO-NFs have a dual role as an anticancer as well as an anti-amyloid agent. In the future, animal models can be used to study the efficacy of the ZnO-NFs in cancer inhibition and amyloid degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684297PMC
http://dx.doi.org/10.1186/s40360-024-00830-xDOI Listing

Publication Analysis

Top Keywords

anti-amyloid activity
16
peony-shaped zinc
8
zinc oxide
8
anticancer anti-amyloid
8
activity vitro
8
as-synthesized zno-nfs
8
anti-amyloid
6
activity
5
zno-nfs
5
oxide nanoflower
4

Similar Publications

There is growing consensus in the Alzheimer's community that combination therapy will be needed to maximize therapeutic benefits through the course of the disease. However, combination therapy raises complex questions and decisions for study sponsors, from preclinical research through clinical trial design to regulatory, statistical, and operational considerations. In January 2024, the Alzheimer's Drug Discovery Foundation convened an expert advisory board to discuss the key considerations in each of these areas.

View Article and Find Full Text PDF
Article Synopsis
  • Current research shows that there’s no effective treatment for α-synucleinopathy related to Parkinson's disease, but small molecules might help prevent harmful α-synuclein aggregation.
  • This study investigates the interaction between glycitein, an O-methylated isoflavone, and α-synuclein, revealing that glycitein forms a stable complex through non-covalent interactions, mainly hydrophobic forces.
  • Glycitein demonstrates promise as a bioactive agent by preventing toxic α-synuclein aggregates in a concentration-dependent manner, protecting cells from neurotoxicity associated with Parkinson's disease.
View Article and Find Full Text PDF

Peony-shaped zinc oxide nanoflower synthesized via hydrothermal route exhibits promising anticancer and anti-amyloid activity.

BMC Pharmacol Toxicol

December 2024

Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India.

Background: Cancer is the deadliest disease, and neurological disorders are also marked as slow progressive diseases, ultimately leading to death. Stopping two mouths with one morsel was the strategy that we used in this study.

Methods: We have synthesized peony-shaped zinc oxide nanoflowers (ZnO-NFs) and characterized them using various photophysical tools like UV-vis spectroscopy, zeta potential analysis, dynamic light scattering (DLS), FTIR, and scanning electron microscopy (SEM), and utilized these nanoflowers to monitor their anticancer and anti-amyloid activity.

View Article and Find Full Text PDF

Precision diagnosis of cognitive impairment due to Alzheimer's disease for therapeutic interventions.

Alzheimers Dement

December 2024

Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.

With the advent of anti-amyloid monoclonal antibody (AAMA) therapy, precision diagnosis is necessary for identifying appropriate patients with cognitive disorders due to Alzheimer's disease. Therapy with AAMAs requires that candidates be diagnosed with mild cognitive impairment or mild dementia, have elevated brain amyloid-β, have good physical, psychiatric, and medical health, and lack clinical or biomarker evidence of potentially impactful non-Alzheimer brain disorders. The first three diagnostic activities are the core of the Clinical Practice Guidelines, but the last element of the precision diagnosis requires new decision-making tools for recognizing multi-etiology cognitive impairment.

View Article and Find Full Text PDF

Background: Hispolon, one of bioactive phenolic compounds from a medicinal mushroom of sang-huang (Phellinus linteus) has been reported to exhibit anticancer and anti-inflammatory activities. The Alzheimer's disease (AD) is ranked one of the top ten leading causes of death worldwide. Little is known about the effects of hispolon on delaying AD progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!