Background: Melanoma cells frequently dedifferentiate in response to inflammation which can increase responses to certain cytokines. Interferon-γ (IFNγ) is an integral part of the anti-tumor immune response and can directly induce both differentiational changes and expression of immunosuppressive proteins in melanoma cells. How the differentiation status of melanoma cells affects IFNγ responses remains unclear.

Methods: Dedifferentiation of melanoma cells was induced via either siRNA or shRNA mediated MITF knockdown and the cells were subsequently treated with IFNγ. Effects of MITF knockdown and IFNγ treatment on gene expression were evaluated via qPCR and RNA sequencing. A Luminex assay was used to analyze the effects of dedifferentiation and IFNγ treatment on cytokine secretion. Effects on PD-L1 protein expression were analyzed via flow cytometry and western blotting. Inhibition of the JAK kinases, NF-κB and STAT3 with small molecule inhibitors, and siRNA mediated knockdown of STAT1 and IRF1 was applied to investigate the molecular mechanism behind IFNγ induced PD-L1 expression in dedifferentiated melanoma cells. The effects of inhibitor treatments and siRNA mediated knockdowns were evaluated via qPCR and western blotting. Bioinformatic analysis of publicly available RNA sequencing data, consisting of 45 patient derived melanoma cell lines, with or without IFNγ treatment, was conducted to assess the generalizability of the in vitro results.

Results: Dedifferentiation renders 624Mel melanoma cells hypersensitive to IFNγ stimulation in a context-dependent manner, resulting in non-additive upregulation of IFNγ-induced genes, increased PD-L1 protein expression and amplified secretion of CCL2, CXCL10 and IL-10. Furthermore, the intensified PD-L1 protein expression occurs through the JAK-STAT1-IRF1 axis. Lastly, dedifferentiated patient derived melanoma cell lines showed enhanced inflammatory signaling in response to IFNγ compared to differentiated cells, and tended to have higher PD-L1 expression, associated with increased IRF1 expression and activity.

Conclusions: Together, these findings indicate the existence of a molecular context linking dedifferentiation and IFNγ signaling in melanoma which may lead to immune evasion. Additionally, the variability in PD-L1 expression among MITF and MITF cells suggests that high IFNγ-induced PD-L1 expression associates with enhanced inflammatory gene expression. These results imply that modulating melanoma differentiation may help shape IFNγ responsiveness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687009PMC
http://dx.doi.org/10.1186/s12964-024-01963-6DOI Listing

Publication Analysis

Top Keywords

melanoma cells
24
pd-l1 expression
16
ifnγ
12
expression
12
ifnγ treatment
12
pd-l1 protein
12
protein expression
12
melanoma
11
cells
9
differentiation status
8

Similar Publications

Caerin 1.1/1.9-mediated antitumor immunity depends on IFNAR-Stat1 signalling of tumour infiltrating macrophage by autocrine IFNα and is enhanced by CD47 blockade.

Sci Rep

January 2025

Key Laboratory of Cancer Immunotherapy of Guangdong Tertiary Education, Guangdong CAR-T Treatment Related Adverse Reaction Key Laboratory, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, China.

Previously, we demonstrated that natural host-defence peptide caerin 1.1/caerin 1.9 (F1/F3) increases the efficacy of anti-PD-1 and therapeutic vaccine, in a HPV16 + TC-1 tumour model, but the anti-tumor mechanism of F1/F3 is still unclear.

View Article and Find Full Text PDF

Background: Melanoma, a highly aggressive skin cancer is frequently driven by the BRAF mutation. Vemurafenib initially offers clinical benefits but often encounters resistance due to secondary mutations and compensatory signaling pathways. Targeting p300, a histone acetyltransferase involved in transcriptional regulation and resistance mechanisms, presents a potential strategy to overcome this therapeutic challenge.

View Article and Find Full Text PDF

Prognostic value of immune biomarkers in melanoma loco-regional metastases.

PLoS One

January 2025

Department of Clinical Medicine, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway.

The prognosis for patients with melanoma loco-regional metastases is very heterogenous. Adjuvant PD-L1-inhibitors have improved clinical outcome for this patient group, but the prognostic impact of tumour PD-L1 expression and number of tumour infiltrating lymphocytes (TILs) is still largely unknown. Here, we investigated the impact on survival for CD3, CD8, FOXP3 and PD-L1 TIL counts and tumour PD-L1 expression in melanoma loco-regional metastases.

View Article and Find Full Text PDF

Myeloid-derived suppressor cells (MDSCs) are expanded in cancer patients, have an intrinsic immunosuppressive function, and thus may play a role in resistance to immunotherapy. Ulceration of the melanoma primary is associated with more aggressive disease and is an independent prognostic factor for melanoma-specific survival. However, the underlying factors contributing to this more aggressive phenotype are not completely understood.

View Article and Find Full Text PDF

The suppression of tyrosinase (TYR), a key enzyme in melanogenesis, has been suggested as an effective strategy for preventing melanin accumulation. We previously discovered the novel chrysin derivative hydroxyethyl chrysin (HE-chrysin) through an irradiation technique, which exerted higher anti-inflammatory and anti-cancer activities than original chrysin. In the present study, we explored whether HE-chrysin has antioxidant and anti-melanogenic capacity using B16F10 murine melanoma cells and molecular docking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!