A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Autonomous detection of nail disorders using a hybrid capsule CNN: a novel deep learning approach for early diagnosis. | LitMetric

Major underlying health issues can be indicated by even minor nail infections. Subungual Melanoma is one of the most severe kinds since it is identified at a much later stage than other conditions. The purpose of this research is to offer novel deep-learning algorithms that target the autonomous categorization of six forms of nail disorders by employing images: Blue Finger, Clubbing, Pitting, Onychogryphosis, Acral Lentiginous Melanoma, and Normal Nail or Healthy Nail Appearance. Based on this, we build an initial baseline CNN model, which is then further advanced by the introduction of the Hybrid Capsule CNN model by the reduction of space hierarchy deficiencies of the classic CNN model. All these models were trained and tested using the Nail Disease Detection dataset with intensive uses of techniques of data augmentation. The Hybrid Capsule CNN model, thus, provided superior classification accuracy compared to the others; the training accuracy was 99.40%, while the validation accuracy was 99.25%, whereas the hybrid model outperformed the Base CNN model with astounding precision, recall of 97.35% and 96.79%. The hybrid model additionally leverages the capsule network and dynamic routing, offering improved robustness against transformations as well as improving spatial properties. The current study consequently provides a very viable, economical, and accessible diagnostic tool, especially for places with a paucity of medical services. The proposed methodology provides tremendous capacity for early diagnosis and better outcomes for the patient in a healthcare scenario. Clinical trial number Not applicable.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12911-024-02840-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686868PMC

Publication Analysis

Top Keywords

cnn model
20
hybrid capsule
12
capsule cnn
12
nail disorders
8
early diagnosis
8
hybrid model
8
model
7
nail
6
cnn
6
hybrid
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!