In recent years, chondrocytes have been found to contain hemoglobin, which might be an alternative strategy for adapting to the hypoxic environment, while the potential mechanisms of that is still unclear. Here, we report the expression characteristics and potential associated pathways of hemoglobin in chondrocytes using single-cell RNA sequencing (scRNA-seq). We downloaded data of normal people and patients with osteoarthritis (OA) from the Gene Expression Omnibus (GEO) database and cells are unbiased clustered based on gene expression pattern. We determined the expression levels of hemoglobin in various chondrocyte subpopulations. Meanwhile, we further explored the difference in the enriched signaling pathways and the cell-cell interaction in chondrocytes of the hemoglobin high-expression and low-expression groups. Specifically, we found that SPP1 was closely associated with the expression of hemoglobin in OA progression. Our findings provide new insights into the distribution characteristics of hemoglobin in chondrocytes and provide potential clues to the underlying role of hemoglobin in OA and the mechanisms related to that, providing potential new ideas for the treatment of OA.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12860-024-00519-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687149PMC

Publication Analysis

Top Keywords

single-cell rna
8
rna sequencing
8
hemoglobin
8
expression hemoglobin
8
hemoglobin chondrocyte
8
chondrocytes hemoglobin
8
hemoglobin chondrocytes
8
gene expression
8
expression
6
sequencing identifies
4

Similar Publications

Circadian neurons within animal brains orchestrate myriad physiological processes and behaviors, but the contribution of these neurons to the regulation of sleep is not well understood. To address this deficiency, we leveraged single-cell RNA sequencing to generate a comprehensive census of transcriptomic cell types of clock neurons. We focused principally on the enigmatic DN3s, which constitute most fly brain clock neurons and were previously almost completely uncharacterized.

View Article and Find Full Text PDF

The identification of immune environments and cellular interactions in the colon microenvironment is essential for understanding the mechanisms of chronic inflammatory disease. Despite occurring in the same organ, there is a significant gap in understanding the pathophysiology of ulcerative colitis (UC) and colorectal cancer (CRC). Our study aims to address the distinct immunopathological response of UC and CRC.

View Article and Find Full Text PDF

Post-traumatic osteoarthritis (PTOA) is a painful joint disease characterized by the degradation of bone, cartilage, and other connective tissues in the joint. PTOA is initiated by trauma to joint-stabilizing tissues, such as the anterior cruciate ligament, medial meniscus, or by intra-articular fractures. In humans, ~50% of joint injuries progress to PTOA, while the rest spontaneously resolve.

View Article and Find Full Text PDF

Phthalates are known endocrine disrupting chemicals and ovarian toxicants that are used widely in consumer products. Phthalates have been shown to exert ovarian toxicity on multiple endpoints, altering transcription of genes responsible for normal ovarian function. However, the molecular mechanisms by which phthalates act on the ovary are not well understood.

View Article and Find Full Text PDF

Anaplastic Thyroid Cancer (ATC) is an aggressive form of cancer with poor prognosis, heavily influenced by its tumor immune microenvironment (TIME). Understanding the cellular and gene expression dynamics within the TIME is crucial for developing targeted therapies. This study analyzes the immune microenvironment of ATC and Papillary Thyroid Cancer (PTC) using single-cell RNA sequencing (scRNA-seq).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!