Microbial loss significantly affects wastewater treatment efficiency. This study simulated the inoculation area of a self-developed biological doubling reactor (BDR) to evaluate the retention efficiency of seven different fillers for aerobic denitrifying bacteria. Over 90 days of continuous operation, the porous filler R3 demonstrated excellent performance, with OD values consistently exceeding 1.0 and minimal fluctuation. On day 90, the seed liquid amplified with R3 achieved removal efficiencies of 100% for ammonia nitrogen, 97.75% for total nitrogen, and 96.4% for chemical oxygen demand, outperforming other fillers. Scanning electron microscopy and microscopic analysis revealed that R3's large large specific surface area and volume formed a unique meshed biofilm structure, enhancing oxygen and nutrient transport while minimizing detachment. This promoted effective enrichment and retention of aerobic denitrifying bacteria. Microbial diversity analysis confirmed that Acinetobacter, a key genus involved in aerobic denitrification, dominated the network biofilm on R3, accounting for an average of 35.63%. while granular fillers, due to oxygen limitation, promoted the growth of anaerobic ammonium-oxidizing Alcaligenes. The use of BDR-enhanced MBBR for treating synthetic wastewater resulted in a 29.6% increase in TN removal efficiency, with stable system operation. The use of porous fillers with a high specific volume supports stable biofilm formation and consistent seed liquid output, providing a viable solution to microbial loss in wastewater treatment processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2024.120730 | DOI Listing |
Environ Res
December 2024
School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China. Electronic address:
Microbial loss significantly affects wastewater treatment efficiency. This study simulated the inoculation area of a self-developed biological doubling reactor (BDR) to evaluate the retention efficiency of seven different fillers for aerobic denitrifying bacteria. Over 90 days of continuous operation, the porous filler R3 demonstrated excellent performance, with OD values consistently exceeding 1.
View Article and Find Full Text PDFWaste Manag
December 2024
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China. Electronic address:
Biofiltration is an important method for composting off-gas treatment. Compost-based materials are widely used as the filling media for biofilter. To expand the application of compost from different composting materials in off-gas control for organic waste aerobic composting, the NH removal efficiency, NO generation, and microbial communities of ammonia monooxygenase (amoA functional gene was selected) and nitrite reductase (nirS functional gene was selected) were investigated using the animal manure compost (AMC) and sludge compost (SC) as filling materials.
View Article and Find Full Text PDFBioresour Technol
December 2024
Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China. Electronic address:
This study cultivated a bacterial consortium (S60) from landfill leachate that exhibited effective heterotrophic nitrification and aerobic denitrification (HN-AD) properties. Under aerobic conditions, the removal of NH-N reached 100 % when the S60 consortium utilised NH-N either as the sole nitrogen source or in combination with NO-N and NO-N. Optimal HN-AD performance was achieved with sodium acetate as a carbon source and a pH of 7.
View Article and Find Full Text PDFMicrobiol Resour Announc
December 2024
Division of Biotechnology, Jeonbuk National University, Iksan, Jeonbuk, South Korea.
We report here the complete genome sequence of sp. strain OS1-2, a bacterium isolated from apple orchard soil and possessing a complete set of denitrification functional genes in its genome. The isolate was observed to perform denitrification under aerobic and anaerobic conditions.
View Article and Find Full Text PDFWater Res
December 2024
The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China. Electronic address:
Bioremediation of Cr(Ⅵ) and ammonia is considered as a promising and cost-effective alternative to chemical and physical methods. However, Cr(Ⅵ) could inhibit nitrogen removal by inhibiting intra-/extracellular electron (IET/EET) transfer or nitrifying and denitrifying enzymes activity due to its higher solubility. In this study, we isolated a simultaneous nitrification and denitrification (SND) microorganism Acinetobacter haemolyticus RH19, capable of outcompeting oxygen to take nitrogen oxides/ammonia as electron acceptors, and studied a combined accelerant (cysteine, biotin and cytokinin) to relive the Cr(Ⅵ) stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!