Spatiotemporal control of cell ablation using Ronidazole with Nitroreductase in Drosophila.

Dev Biol

Program in Fundamental Neuroscience, Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA; Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA. Electronic address:

Published: December 2024

The ability to induce cell death in a controlled stereotypic manner has led to the discovery of evolutionary conserved molecules and signaling pathways necessary for tissue growth, repair, and regeneration. Here we report the development of a new method to genetically induce cell death in a controlled stereotypic manner in Drosophila. This method has advantages over other current methods and relies on expression of the E. coli enzyme Nitroreductase (NTR) with exogenous application of the nitroimidazole prodrug, Ronidazole. NTR expression is controlled spatially using the GAL4/UAS system while temporal control of cell death is achieved through timed feeding of Ronidazole supplied in the diet. In cells expressing NTR, Ronidazole is converted to a toxic substance inducing DNA damage and cell death. Caspase cell death is achieved in a range of NTR-expressing cell types with Ronidazole feeding, including epithelial, neurons, and glia. Removing Ronidazole from the diet restores cell death to normal unperturbed levels. Unlike other genetic ablation methods, temporal control is achieved through feeding not temperature, circumventing developmental complications associated with temperature changes. Ronidazole-NTR also requires only two transgenes, a GAL4 driver and UAS-NTR, which is generated as a GFP-NTR fusion allowing for easy setup of large-scale screening of UAS-RNAi lines. Altogether, Ronidazole-NTR provides a new streamlined method for inducing cell death in Drosophila with temperature-independent ON/OFF control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2024.12.017DOI Listing

Publication Analysis

Top Keywords

cell death
28
cell
9
control cell
8
induce cell
8
death controlled
8
controlled stereotypic
8
stereotypic manner
8
temporal control
8
death achieved
8
death
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!