Microfibres released from textiles are one of the most common types of microplastics (MPs) found in the environment. Whether they are synthetic or natural, they can undergo degradation in different environmental matrices. This may result in the leaching of a variety of chemicals, mainly textile dyes and additives of high toxicity that need to be regulated. A novel method was developed, validated and applied to identify and quantify these types of compounds present in a hydrolytic alkaline degradation solution (neutralized), but it can also be used in similar laboratory-simulated solutions, and seawater. The employed solution was utilized in an accelerated degradation simulation of two different polyester (PES) fibre types. Thirteen compounds were extracted and quantified using a solid-phase extraction protocol followed by HPLC-HRMS/MS. Intra-day (Intra-R) and inter-day (Inter-R) precision ranged from 0.02 to 6.23 % and 0.08 to 8.85 %, respectively, while linearity (R) values were >0.9980. The limits of detection (LOD=0.7- 3.3 ng mL) and quantification (LOQ=0.5- 10 ng mL) were determined for the proposed method. Good recoveries were obtained for all compounds studied (65-120 %), while matrix effects ranged from -6 to 30 %, depending on the analyte. Ten compounds were detected and quantified in the degradation solution of the two different polyester fibres, with three (benzothiazole, 4-nitrophenol, 2,6-dichloro-4-nitroaniline) being PES type specific, while the rest were found in both types. A non-target analysis allowed the identification of a wider range of possible leachates (55 compounds in positive ion mode and 24 in negative).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2024.465629DOI Listing

Publication Analysis

Top Keywords

dyes additives
8
polyester fibres
8
degradation solution
8
degradation
5
compounds
5
multi-residue method
4
method based
4
based solid
4
solid phase
4
phase extraction
4

Similar Publications

Guadua angustifolia biochar/TiO composite and biochar as bio-based materials with environmental and agricultural application.

Sci Rep

January 2025

Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia.

Globally, the companies that make commercial use of bamboo culms produce different kinds of solid waste rich in lignocellulosic biomass, which in some cases is not used and is discarded in landfills or incinerated in the open air; losing the possibility of recovering them and using them in other productive sectors. The research objective were to produce a biochar from Guadua agustifolia  Kunth sawdust, evaluate its potential environmental and agricultural use, obtain a biochar/TiO  composite to inactivate Escherichia coli and use the biochar as a soil conditioner in medicinal plants producing phenolic compounds and flavonoids. Biochar composite (produced at 300 °C for 1 h) involved TiO at 450 °C for 1 h for inactivation of E.

View Article and Find Full Text PDF

In this work CS-SDAEM polymer brushes with long-chain structure were synthesized, and TiO/CS-SDAEM nanoparticles were prepared by modifying them on the TiO surface. The prepared modified membrane can effectively degrade dyes through photocatalysis and can reduce the contamination rate of the membrane during use. The separation membrane achieves efficient removal of contamination by self-cleaning.

View Article and Find Full Text PDF

In this work, Terminalia chebula leaf extract was used to synthesize CuO-CoO nanoparticles, which were then embedded in a rice straw biochar. This new biochar-based nano-catalyst is used to photocatalytically degrade a variety of dyes (Eosin Y, Trypan Blue, Crystal Violet, Methylene Blue, Brilliant Green), as well as a binary mixture of Eosin Y and Trypan Blue dyes. It is also used for the catalytic reduction of nitro compounds (4-NP, 3-NP, and Picric acid).

View Article and Find Full Text PDF

A HPU-23@Ru@Tb-NH sensor array with light-driven oxidase-mimicking activity and triple-emission fluorescence was developed. It was composed of a Tb-functionalized metal organic framework and Ru(bpy) and applied to the simultaneous detection of Hg, ClO, and PO via differently responsive channels. HPU-23@Ru@Tb-NH had a photoresponsive colorimetric response toward Hg with a LOD as low as 4.

View Article and Find Full Text PDF

the axillary reverse mapping (ARM) procedure aims to preserve the lymphatic drainage structures of the upper extremity during axillary surgery for breast cancer, thereby reducing the risk of lymphedema in the upper limb. Material and this prospective study included 57 patients with breast cancer who underwent SLNB and ARM. The sentinel lymph node (SLN) was identified using a radioactive tracer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!