Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The integration of technology into health professions assessment has created multiple possibilities. In this paper, we focus on the challenges and opportunities of integrating technologies that are used during clinical activities or that are completed by raters after a clinical encounter. In focusing on technologies that are more proximal to practice, we identify tradeoffs with different data collection approaches. To maximize the benefits of integrating technology in workplace-based assessment, we describe the importance of using preexisting frameworks from the fields of assessment design, implementation research, and clinical artificial intelligence governance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673589 | PMC |
http://dx.doi.org/10.5334/pme.1272 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!