A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

TDERS, an exosome RNA-derived signature predicts prognosis and immunotherapeutic response in clear cell renal cell cancer: a multicohort study. | LitMetric

Background: Tumor-derived exosomes are involved in tumor progression and immune invasion and might function as promising noninvasive approaches for clinical management. However, there are few reports on exosom-based markers for predicting the progression and adjuvant therapy response rate among patients with clear cell renal cell carcinoma (ccRCC).

Methods: The signatures differentially expressed in exosomes from tumor and normal tissues from ccRCC patients were correspondingly deregulated in ccRCC tissues. We adopted a two-step strategy, including Lasso and bootstrapping, to construct a novel risk stratification system termed the TDERS (Tumor-Derived Exosome-Related Risk Score). During the testing and validation phases, we leveraged multiple external datasets containing over 2000 RCC cases from eight cohorts and one inhouse cohort to evaluate the accuracy of the TDERS. In addition, enrichment analysis, immune infiltration signatures, mutation landscape and therapy sensitivity between the high and low TDERS groups were compared. Finally, the impact of TDERS on the tumor microenvironment (TME) was also analysed in our single-cell datasets.

Results: TDERS consisted of 12 mRNAs deregulated in both exosomes and tissues from patients with ccRCC. TDERS achieved satisfactory performance in both prognosis and immune checkpoint inhibitor (ICI) response across all ccRCC cohorts and other pathological types, since the average area under the curve (AUC) to predict 5-year overall survival (OS) was larger than 0.8 across the four cohorts. Patients in the TDERS high group were resistant to ICIs, while mercaptopurine might function as a promising agent for those patients. Patients with a high TDERS were characterized by coagulation and hypoxia, which induced hampered tumor antigen presentation and relative resistance to ICIs. In addition, single cells from 12 advanced samples validated this phenomenon since the interaction between dendritic cells and macrophages was limited. Finally, PLOD2, which is highly expressed in fibro- and epi‑tissue, could be a potential therapeutic target for ccRCC patients since inhibiting PLOD2 altered the malignant phenotype of ccRCC .

Conclusion: As a novel, non-invasive, and repeatable monitoring tool, the TDERS could work as a robust risk stratification system for patients with ccRCC and precisely inform treatment decisions about ICI therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11674438PMC
http://dx.doi.org/10.1016/j.jncc.2024.07.002DOI Listing

Publication Analysis

Top Keywords

tders
10
clear cell
8
cell renal
8
renal cell
8
function promising
8
patients
8
ccrcc patients
8
risk stratification
8
stratification system
8
patients ccrcc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!