Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, we present the significant results from the Covid Radiographic imaging System based on AI (Co.R.S.A.) project, which took place in Italy. This project aims to develop a state-of-the-art AI-based system for diagnosing Covid-19 pneumonia from Chest X-ray (CXR) images. The contributions of this work are manifold: the release of the public CORDA dataset, a deep learning pipeline for Covid-19 detection and prioritization, the clinical validation of the developed solution by expert radiologists, and an in-depth analysis of possible biases embedded in the data and in the models, in order to build more trust in our AI-based pipeline. The proposed detection model is based on a two-step approach that provides reliable results based on objective radiological findings. Our prioritization scheme ensures the ordering of the patients so that severe cases are presented first. We showcase the impact of our pipeline on radiologists' workflow with a clinical study, allowing us to assess the real benefits in terms of accuracy and time efficiency. Project homepage: https://corsa.di.unito.it/.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11681887 | PMC |
http://dx.doi.org/10.1016/j.csbj.2024.11.045 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!