Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As Moore's Law comes to an end, the implementation of high-performance chips through transistor scaling has become increasingly challenging. To improve performance, increasing the chip area to integrate more transistors has become an essential approach. However, due to restrictions such as the maximum reticle area, cost, and manufacturing yield, the chip's area cannot be continuously increased, and it encounters what is known as the "area-wall". In this paper, we provide a detailed analysis of the area-wall and propose a practical solution, the Big Chip, as a novel chip form to continuously improve performance. We introduce a performance model for evaluating Big Chip and discuss its architecture. Finally, we derive the future development trends of the Big Chip.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670732 | PMC |
http://dx.doi.org/10.1016/j.fmre.2023.10.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!