Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
MicroRNA-222 (miR-222) plays a crucial role in neurodegeneration and is up-regulated in Alzheimer's disease (AD) patients. Andrographolide (Andro) has been reported to have anti-inflammatory and neuroprotective effects, showing potential for treating AD. The relationship between Andro's anti-AD mechanism and the regulation of miR-222 was discussed in this study. Andro protected against cytotoxicity induced by lipopolysaccharide (LPS) or amyloid-β, accompanied by upregulating p62 and Nrf2 mRNA and protein, downregulating TLR4 and NF-κBp65 mRNA and protein, and increasing LC3Ⅱ protein in vitro. miRNA and mRNA sequencing results showed that Andro downregulated miR-222 and upregulated sqstm1/p62. Andro was observed to inhibit the expression of miR-222 and the phosphorylation of NF-κBp65, while simultaneously enhancing the levels of p62 and LC3Ⅱ proteins, decreasing Aβ levels, and attenuating the release of inflammatory factors in the 3xTg-AD mice. MiR-222 mimic increased NF-κBp65 mRNA and protein levels in LPS-induced cells, while miR-222 inhibitors increased p62 mRNA and protein levels as well as Nrf2 and LC3Ⅱ protein, and decreased p-NF-κBp65 protein level in LPS-induced cells. Furthermore, miR-222 mimic reversed the increase in p62 and LC3Ⅱ protein and the decrease in NF-κBp65 mRNA and protein, as well as the decrease in Tau protein levels induced by Andro in LPS-induced cells. These findings suggest that Andro plays a neuroprotective role through downregulation of miR-222 to promote p62 expression while inhibiting NF-kB p65 expression, providing new insights into the mechanism of action of Andro for treating AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2024.177224 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!