Cyclin-dependent kinases (CDKs) regulate cell cycle progression and transcription. CDK7 plays a pivotal role in cell division and proliferation, and the CDK7 gene often exhibits mutations or copy number loss in cancer. Pharmacological targeting of CDK7 has been proposed as a cancer treatment strategy and several inhibitors are currently in clinical trials. As opposed to CDK2, the use of structure-assisted drug design for CDK7 has been limited. We present here CDK2m7, a CDK2-based CDK7 mimic created by mutagenesis of the CDK2 active site pocket. CDK2m7 can be produced in E. coli in a fully active complex with cyclin A2 in high yield and purity. CDK2m7 exhibits a shift in inhibitor selectivity from CDK2 to CDK7 and readily crystallizes. Therefore, it can be used in structure-assisted design of CDK7 inhibitors, as demonstrated by the crystal structure of the complex with inhibitor SY5609. CDK2m7 thus represents a simple and affordable platform for CDK7 rational drug development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.139117DOI Listing

Publication Analysis

Top Keywords

cdk2-based cdk7
8
cdk7 mimic
8
crystal structure
8
cdk7
8
design cdk7
8
mimic tool
4
tool structural
4
structural analysis
4
analysis biochemical
4
biochemical validation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!