Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Frailty is one of the most concerning aspects of global population aging, and early identification is crucial to prevent or reverse its progression. Simple, universal, and efficient frailty assessment technologies are essential for the timely detection of frailty in older patients. Various multi-dimensional assessment instruments have been developed to quantify frailty phenotypes; we review the literature on wearable sensor technologies leveraged for older person frailty assessment. This review examines representative studies on older person frailty assessment published up to 2024, summarizing pertinent wearable sensor technologies utilized for frailty assessment. Our findings suggest that objective, simple, rapid, and affordable sensor-based frailty screening holds utility across diverse applications including diagnostic aid, prognostication, and endpoint ascertainment in research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exger.2024.112668 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!