Background: Somatostatin analogs (SSAs) binding to and activating somatostatin receptors (SSTRs) have been extensively used for the treatment of neuroendocrine tumors (NETs). The currently approved synthetic SSAs have high affinity for SSTR2 (octreotide/lanreotide) or for SSTR2 and SSTR5 (pasireotide). These agents have shown symptom control and antiproliferative effects in subsets of NET patients and this was associated with the expression of the targeted SSTRs. Pancreatic NETs (Pan-NETs) are uncommon tumors with a propensity to metastasize. For unresectable advanced Pan-NETs expressing SSTRs, SSAs are the first-line medical therapy. Pan-NETs express mainly SSTR1, SSTR2, and SSTR3 and thus should respond to agonists targeting SSTR3.

Summary: We evaluated the efficacy of ITF2984, a novel multireceptor agonist with specificity for SSTR3, against Pan-NET cells representative of well-differentiated, functioning tumors, and expressing high levels of SSTR3. The effect of ITF2984 on cell proliferation/viability and on its ability to promote apoptosis and suppress hormone secretion was evaluated in 2D and 3D organotypic culture systems. Pasireotide was tested in parallel for comparative purposes.

Key Message: We found that ITF2984 is as effective as pasireotide at inhibiting both proliferation/viability and hormone secretion, as well as at inducing apoptosis of Pan-NET cells grown as both 2D monolayers and 3D spheroids. High-dose ITF2984 elicits structural alterations in Pan-NET 3D spheroids compatible with cell death more effectively than pasireotide. Altogether, ITF2984 may represent a useful alternative to pasireotide for the medical treatment of Pan-NETs and other tumors with elevated SSTR3 expression.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000543136DOI Listing

Publication Analysis

Top Keywords

neuroendocrine tumors
8
pan-net cells
8
hormone secretion
8
itf2984
6
tumors
5
pasireotide
5
novel sstr3
4
sstr3 full
4
full agonist
4
agonist itf2984
4

Similar Publications

The 2017 World Health Organization classification described aggressive pituitary neuroendocrine tumor (PitNET) as "a tumor with strong invasiveness and rapid growth, which is difficult to treat with surgery, radiation therapy, or drug therapy," which remains a challenge in the treatment of pituitary tumors. Currently, temozolomide (TMZ) is the first-line treatment for aggressive PitNET. However, it is not yet covered by insurance in Japan.

View Article and Find Full Text PDF

A 50-year-old female presented with abdominal pain. Upper gastrointestinal endoscopy revealed a 30 mm ulcerative lesion extending from the duodenal bulb to the descending portion, and biopsy confirmed poorly differentiated adenocarcinoma. Abdominal contrast-enhanced CT scan showed an hypovascular tumor in the pancreatic head with suspected invasion into the duodenum, along with enlarged #8 lymph node.

View Article and Find Full Text PDF

Pituitary neuroendocrine tumors (PitNETS) are common intracranial tumors, but extrasellar or ectopic PitNETS are very rare and supposed to originate from some pituitary remnants. They are mostly found in sphenoidal sinus. But particularly, ectopic clival PitNETS are highly aggressive and can cause bone invasion and can be misdiagnosed as other lesions of the skull base such as chordomas.

View Article and Find Full Text PDF

Genetic evidence for the suppressive role of zebrafish vhl targeting mavs in antiviral innate immunity during RNA virus infection.

J Immunol

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China.

The von Hippel-Lindau (VHL) tumor suppressor gene VHL is a classic tumor suppressor that has been identified in family members with clear cell renal cell carcinomas, central nervous system and retinal hemangioblastomas, phaeochromocytomas, and pancreatic neuroendocrine tumors. The well-defined function of VHL is to mediate proteasomal degradation of hydroxylated hypoxia-inducible factor α proteins, resulting in the downregulation of hypoxia-responsive gene expression. Previously, we reported that VHL inhibits antiviral signaling by targeting mitochondrial antiviral signaling protein (MAVS) for proteasomal degradation.

View Article and Find Full Text PDF

Objectives: Compare oncologic outcomes between single-segment and multi-segment resections in patients with clinical stage IA1 and IA2 non-small cell lung cancer.

Methods: A retrospective review (2011-2022) was conducted using a prospectively maintained database. Patients undergoing anatomical segmentectomy for clinical stage IA ≤ 2 cm non-small cell lung cancers were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!