Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The study of scene perception is crucial to the understanding of how one interprets and interacts with their environment, and how the environment impacts various cognitive functions. The literature so far has mainly focused on the impact of low-level and categorical properties of scenes and how they are represented in the scene-selective regions in the brain, PPA, RSC, and OPA. However, higher-level scene perception and the impact of behavioral goals is a developing research area. Moreover, the selection of the stimuli has not been systematic and mainly focused on outdoor environments. In this fMRI experiment, we adopted multiple behavioral tasks, selected real-life indoor stimuli with a systematic categorization approach, and used various multivariate analysis techniques to explain the neural modulation of scene perception in the scene-selective regions of the human brain. Participants (N = 21) performed categorization and approach-avoidance tasks during fMRI scans while they were viewing scenes from built environment categories based on different affordances ((i)access and (ii)circulation elements, (iii)restrooms and (iv)eating/seating areas). ROI-based classification analysis revealed that the OPA was significantly successful in decoding scene category regardless of the task, and that the task condition affected category decoding performances of all the scene-selective regions. Model-based representational similarity analysis (RSA) revealed that the activity patterns in scene-selective regions are best explained by task. These results contribute to the literature by extending the task and stimulus content of scene perception research, and uncovering the impact of behavioral goals on the scene-selective regions of the brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.visres.2024.108539 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!