Large bone defects are a major clinical challenge in bone reconstructive surgery. 3D printing is a powerful technology that enables the manufacture of custom tissue-engineered scaffolds for bone regeneration. Electrical stimulation (ES) is a treatment method for external bone defects that compensates for damaged internal electrical signals and stimulates cell proliferation and differentiation. In this study, we propose a simple, reliable, and versatile strategy to prepare multifunctional 3D printed scaffold combined with ES for bone defect therapy. Firstly, scaffolds composed of polycaprolactone (PCL) and TiC were prepared by 3D printing technology, and then a stromal cell derived factor 1 (SDF1) containing DOPA tag was loaded onto the scaffold surface. TiC was selected as the electrode component because of its excellent electrical conductivity. The selection of DOPA-modified SDF-1(DOPA-SDF1) can improve the material binding ability and exert long-term stem cell recruitment function. The results show that prepared 3D printed scaffold (DOPA-SDF1@PCL#TiC) has good hydrophilicity, electrical conductivity, antibacterial property, biocompatibility and stem cell recruitment ability. Furthermore, the expression of osteogenic specific genes in scaffold surface cells was significantly increased when pulse ES (PES) treatment was applied. The results of tibial plateau defect repair experiment showed that DOPA-SDF1@PCL#TiC scaffold can significantly promote the formation of new bone and collagen fibres. When the DOPA-SDF1@PCL#TiC scaffold was used in combination with PES therapy, the bone defect regeneration rate was further improved. This kind of scaffold could provide a new strategy for promoting the healing of large bone injuries and could expand the application of adjuvant therapy such as PES.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2024.114470 | DOI Listing |
Haematologica
January 2025
Hematology and Stem Cell Transplantation Department and the Eisenberg RD Authority, Shaare Zedek Medical Center, Hebrew University Jerusalem, Jerusalem; Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa; The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa.
Int J Rheum Dis
January 2025
Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
Objective: Serum uric acid (SUA) may play positive roles in diseases associated with oxidative stress, such as osteoporosis (OP). Nevertheless, the specific impact of SUA levels on both bone mineral density (BMD) and the risk of OP remains uncertain. Considering such information crucial for clinicians when making decisions about urate-lowering therapy (ULT), we sought to fill this gap by conducting dose-response meta-analyses.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.
High transductive loss at tissue injury sites impedes repair. The high dissipation characteristics in the electromechanical conversion of piezoelectric biomaterials pose a challenge. Therefore, supramolecular engineering and microfluidic technology is utilized to introduce slide-ring polyrotaxane and conductive polypyrrole to construct stress-electric coupling hydrogel microspheres.
View Article and Find Full Text PDFWorld J Orthop
December 2024
Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil.
The gut microbiome, a complex ecosystem of microorganisms in the digestive tract, has emerged as a critical factor in human health, influencing metabolic, immune, and neurological functions. This review explores the connection between the gut microbiome and orthopedic health, examining how gut microbes impact bone density, joint integrity, and skeletal health. It highlights mechanisms linking gut dysbiosis to inflammation in conditions such as rheumatoid arthritis and osteoarthritis, suggesting microbiome modulation as a potential therapeutic strategy.
View Article and Find Full Text PDFWorld J Orthop
December 2024
Department of Orthopaedic Surgery, The University of Tokyo, Bunkyo-ku 113-8655, Tokyo, Japan.
Background: Accurate data on the prognosis of bone metastases are necessary for appropriate treatment. Immune checkpoint inhibitors (ICIs) are widely used in the treatment of gene mutation-negative non-small cell lung cancer (GMN-NSCLC).
Aim: To investigate the prognostic factors in patients with bone metastases from GMN-NSCLC following ICI use.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!