In case of severely burned bodies, victim identification by visual or fingerprints recognition is often prevented by altered body conditions. To overcome these circumstances, different techniques are available. Among these, the most reliable is molecular identification, especially in cases of detached body parts. However, DNA analysis of highly burned remains is a very challenging task. The high temperatures reached at the time of burning can lead to the complete destruction of the genetic material, making DNA typing arduous. This work presented a successful identification through molecular analysis of 11 heavily carbonized victims assigned to the Institute of Legal Medicine of Modena (Italy) between June 2022 and June 2023: a helicopter crash, a femicide and two car accidents. Post-mortem (PM) and ante-mortem (AM) data were compared, allowing victims' identification and their quick return to relatives. Complete autosomal and Y chromosome STRs profiles were obtained for all the corpses. For the helicopter crash case, the utility of the DVI module implemented in the Familias software is shown as this aid the fast association of the seven victims involved with the familiar references available for identification. The importance of the sampling strategy and the need of a systematic approach to select the most promising biological material for a more successful downstream DNA-based identification is also highlighted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.forsciint.2024.112359DOI Listing

Publication Analysis

Top Keywords

helicopter crash
8
identification
7
experience based
4
based efficient
4
efficient approach
4
approach dna-led
4
dna-led identification
4
identification highly
4
highly carbonized
4
carbonized human
4

Similar Publications

In case of severely burned bodies, victim identification by visual or fingerprints recognition is often prevented by altered body conditions. To overcome these circumstances, different techniques are available. Among these, the most reliable is molecular identification, especially in cases of detached body parts.

View Article and Find Full Text PDF

Quantifying the Impact of Sustained Acceleration on Critical Care Transport Medical Equipment.

Mil Med

December 2024

Clinical and Operational Space Medicine Innovation Consortium (COSMIC), 59th Medical Wing Science and Technology, Lackland Air Force Base, TX 78236, USA.

Introduction: Military and commercial stakeholders are investing to explore the use of hypersonic aircraft and orbital spacecraft to transport cargo, medical supplies, passengers, and casualties. These vehicle platforms require periods of sustained acceleration, but to date, these dynamic forces have not been comprehensively considered in the environment of critical care patient movement because injured patients and advanced aeromedical evacuation (AE) equipment are rarely subjected to these conditions. While military AE equipment does undergo crash hazard acceleration testing, equipment functionality during or after sustained acceleration remains to be evaluated.

View Article and Find Full Text PDF

Introduction: The use of helicopter emergency medical services is useful for rescuing or transporting highly time-dependent disease patients, from urban remote areas or harsh environments in the hospital, providing advanced pre-hospital life support in an emergency setting.

Study Objective: This study aims to identify changes in mission characteristics, crew composition, and operational procedures within the helicopter emergency medical service (HEMS) system of L'Aquila, Italy, to identify operational patterns, mission characteristics, crew composition and patient outcomes over time, with specific attention to changes implemented after the Monte Cefalone incident.

Methods: Changes in the characteristics of the rescued patients, the helicopter missions, the crew members and the type of interventions were analysed.

View Article and Find Full Text PDF

Due to increasing mobility and energy conservation needs, improving bus and coach safety without adding weight is essential. Many crashes with fatal outcomes for vehicle occupants are associated with the rollover of the vehicle, revealing the structural weakness of the steel pillars between windows, which must resist high levels of bending during rollovers. This study aims to reinforce these pillars with expired carbon fiber prepreg from the aircraft industry, improving safety and reducing environmental waste.

View Article and Find Full Text PDF

Purpose: Understanding how spinal orientation affects injury outcome is essential to understand lumbar injury biomechanics associated with high-rate vertical loading.

Methods: Whole-column human lumbar spines (T12-L5) were dynamically loaded using a drop tower to simulate peak axial forces associated with high-speed aircraft ejections and helicopter crashes. Spines were allowed to maintain natural lordotic curvature for loading, resulting in a range of orientations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!