Introduction: Single-cell RNA-seq (scRNA-seq) revolutionized our understanding of tissue complexity in health and disease and revealed massive transcriptional dysregulation across placental cell classes in early-onset, but not late-onset preeclampsia (PE). However, the multinucleated syncytium is largely inaccessible to cell dissociation. Nuclei isolation and single-nuclei RNA-seq may be preferable in the placenta; not least considering compatibility with long-term tissue storage. Yet, nuclei contain a subsample of the cells' transcriptional profile. Mature transcripts critical to cellular function and disease may be missed.

Methods: We analyzed placenta from pregnancies using single-cell and single-nuclei RNA-seq. The datasets comprise 45,836 cells and 27,078 nuclei, from 10 to 7 early-onset preeclampsia (EPE) cases and 3 and 2 early idiopathic controls (ECT), respectively. We compared the methods' sensitivities, cell type detection, differential gene expression in PE, and performed histological validations.

Results: Mature syncytiotrophoblast were sampled ∼50x more efficiently after nuclei extraction. Yet, scRNA-seq was more sensitive in detection of genes, molecules and mature transcripts. In snRNA-seq, nuclei of all placental cell classes suffered ambient trophoblast contamination. Transcripts from extravillous trophoblast, stroma, vasculature and immune cells were profiled less comprehensively by single-nuclei RNA-seq (snRNA-seq), restricting cell-type detection. In EPE, we found dysregulation of angiogenic actors FLT1/PGF both in prefused syncytiotrophoblast after cell extraction, and mature syncytiotrophoblast after nuclei isolation. Disease-related stress and inflammation were undetected from nuclei.

Discussion: scRNA-seq has important advantages over snRNA-seq for comprehensive transcriptomics studies of the placenta, especially to understand cell-type resolved dysregulation in pathologies. Yet, to address the dilemma of an underrepresented syncytium, studies benefit from complementary nuclei extraction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.placenta.2024.12.011DOI Listing

Publication Analysis

Top Keywords

single-nuclei rna-seq
12
placental cell
8
cell classes
8
nuclei isolation
8
mature transcripts
8
mature syncytiotrophoblast
8
nuclei extraction
8
nuclei
7
cell
5
single-nuclei
4

Similar Publications

Introduction: Single-cell RNA-seq (scRNA-seq) revolutionized our understanding of tissue complexity in health and disease and revealed massive transcriptional dysregulation across placental cell classes in early-onset, but not late-onset preeclampsia (PE). However, the multinucleated syncytium is largely inaccessible to cell dissociation. Nuclei isolation and single-nuclei RNA-seq may be preferable in the placenta; not least considering compatibility with long-term tissue storage.

View Article and Find Full Text PDF

Objective: The Polycomb Repressive Complex 2 (PRC2) regulates neural stem cell behaviour during development of the cerebral cortex, yet how the loss of PRC2 developmentally influences cell identity in the mature brain is poorly defined. Using a mouse model in which the PRC2 gene Embryonic ectoderm development (Eed) was conditionally deleted from the developing mouse dorsal telencephalon, we performed single nuclei RNA sequencing (snRNA-seq) on the cortical plate of an adult heterozygote Eed knockout mouse and an adult homozygote Eed knockout mouse compared to a littermate control. This work was part of a larger effort to understand consequences of mutations to PRC2 within the mature brain.

View Article and Find Full Text PDF

Transcriptional profile of the rat cardiovascular system at single-cell resolution.

Cell Rep

December 2024

Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiology Division, Massachusetts General Hospital, Boston, MA 02114, USA. Electronic address:

We sought to characterize cellular composition across the cardiovascular system of the healthy Wistar rat, an important model in preclinical cardiovascular research. We performed single-nucleus RNA sequencing (snRNA-seq) in 78 samples in 10 distinct regions, including the four chambers of the heart, ventricular septum, sinoatrial node, atrioventricular node, aorta, pulmonary artery, and pulmonary veins, which produced 505,835 nuclei. We identified 26 distinct cell types and additional subtypes, with different cellular composition across cardiac regions and tissue-specific transcription for each cell type.

View Article and Find Full Text PDF

Single-cell CRISPR screens link genetic perturbations to transcriptional states, but high-throughput methods connecting these induced changes to their regulatory foundations are limited. Here, we introduce Multiome Perturb-seq, extending single-cell CRISPR screens to simultaneously measure perturbation-induced changes in gene expression and chromatin accessibility. We apply Multiome Perturb-seq in a CRISPRi screen of 13 chromatin remodelers in human RPE-1 cells, achieving efficient assignment of sgRNA identities to single nuclei via an improved method for capturing barcode transcripts from nuclear RNA.

View Article and Find Full Text PDF

Single-nuclei RNA sequencing remains a challenge for many human tissues, as incomplete removal of background signal masks cell-type-specific signals and interferes with downstream analyses. Here, we present Quality Clustering (QClus), a droplet filtering algorithm targeted toward challenging samples. QClus uses additional metrics, such as cell-type-specific marker gene expression, to cluster nuclei and filter empty and highly contaminated droplets, providing reliable filtering of samples with varying number of nuclei and contamination levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!