Fermented sea bass, recognized for its firmness and chewy texture, provides a distinct sensory experience.This study investigated the texture and microstructural properties of fermented sea bass during fermentation. Proteomics analysis identified the key proteins involved in firmness development, revealing the molecular mechanisms behind these changes. Water migration and myofibril thickening were significant contributors to the increased firmness, hardness, and chewiness. Label-free proteomics revealed 881 proteins, with 426 were differentially expressed, leading to the identification of 155 key protein biomarkers linked to texture. Structural proteins such as myosin light chain and actin correlated positively with hardness, chewiness, and adhesiveness. Fermentation also increased phosphorylation, enhancing protein degradation and texture attributes. Signaling pathways such as PI3k-AkT, HIF-1, and calcium ion signaling pathways were implicated in metabolism and myosin assembly, fortifying muscle tissue firmness. This study provided critical insights into the quality control and production optimization in the fermented sea bass industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.142603 | DOI Listing |
Food Chem
December 2024
College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China. Electronic address:
Sea buckthorn, rich in nutrients and bioactive compounds such as phenolics, fatty acids, and vitamins, presents processing challenges due to its intense sourness and bland flavor. This study addresses key challenges in flavor enhancement and sourness reduction by evaluating the effects of pectinase treatment and inoculation sequences on the overall quality. Optimal malic acid degradation and antioxidant occurred when Schizosaccharomyces pombe (S.
View Article and Find Full Text PDFFood Chem
December 2024
Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China. Electronic address:
Fermented sea bass, recognized for its firmness and chewy texture, provides a distinct sensory experience.This study investigated the texture and microstructural properties of fermented sea bass during fermentation. Proteomics analysis identified the key proteins involved in firmness development, revealing the molecular mechanisms behind these changes.
View Article and Find Full Text PDFmSystems
December 2024
Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, USA.
, particularly uncultured representatives, are one of the most abundant microbial groups in coastal salt marshes, dominating the belowground rhizosphere, where over half of plant biomass production occurs. However, this class generally remains poorly understood, particularly in a salt marsh context. Here, novel metagenome-assembled genomes (MAGs) were generated from the salt marsh rhizosphere representing , , JAAYZQ01, B4-G1, JAFGEY01, UCB3, and orders.
View Article and Find Full Text PDFIndian J Med Microbiol
December 2024
Department of Microbiology, JIPMER, Puducherry, India. Electronic address:
We describe a rare case of an eleven-year-old child with undiagnosed underlying Crohn's disease who contracted Vibrio pelagius. Though the exact source remained undetermined, the child may have acquired it through infected sea food. Automated system failed to exactly identify the isolated organism; we used detailed biochemical tests for identification.
View Article and Find Full Text PDFJ Nat Prod
December 2024
Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, People's Republic of China.
Twelve new breviane spiroditerpenoids, namely, chrysobreviones A-L (-), together with seven structurally related analogues (-) were isolated from the EtOAc extract of the fermented cultures of deep-sea-derived fungus sp. F59. These structures including absolute configurations were resolved on the basis of extensive analysis of NMR spectroscopic data and HRESIMS, in association with experimental and calculated ECD data as well as the modified Mosher's method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!