A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Compression and water retention behavior of saline soil improved by MICP combined with activated carbon. | LitMetric

Compression and water retention behavior of saline soil improved by MICP combined with activated carbon.

Sci Rep

Department of Civil and Smart Construction Engineering, Shantou University, Shantou, 515063, Guangdong, China.

Published: December 2024

Saline soil is widely distributed in China and poses significant challenges to engineering construction due to its harmful effects, such as salt heaving, dissolution collapse, and frost heaving. The Microbial-Induced Calcite Precipitation (MICP) method is an emerging environmental-friendly modification that can reduce or eliminate the environmental and engineering hazards of saline soil. To verify the feasibility of the MICP method for improving the properties of saline soil, laboratory tests were conducted to study the effects of salt content, activated carbon content and freeze-thaw cycles on the compression and water retention behavior of MICP modified saline soil. The following conclusions were drawn: calcium carbonate produced from the MICP can cement the soil particles of the modified soil structures, which resists the expansion damage caused by salt frost heaving and reduces soil compressibility. Additionally, calcium carbonate particles can fill pores of the soil structures, which improves the water retention capacity of the modified saline soil. The addition of activated carbon can enhance the MICP reaction leading to further reduction in compressibility and enhancement in water retention capacity of MICP modified saline soil.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-83083-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682071PMC

Publication Analysis

Top Keywords

saline soil
28
water retention
16
activated carbon
12
modified saline
12
soil
11
compression water
8
retention behavior
8
effects salt
8
frost heaving
8
micp method
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!