Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The oxidation of 5-HMF to HMFCA is an important yet complex process, as it generates high-value chemical intermediates. Achieving this transformation efficiently requires the development of non-precious, highly active catalysts derived from renewable biomass sources. In this work, we introduce UoM-1 (UoM, University of Mazandaran), a novel cobalt-based metal-organic framework (Co-MOF) synthesized using a simple one-step ultrasonic irradiation method. The synthesis employed the ligand 4,4'-((1E,1'E)-((5-carboxy-1,3-phenylene)bis(azaneylylidene))bis (methaneylylidene))dibenzoic acid (Hbdda). A comprehensive suite of analytical techniques, including FT-IR, EDX, ICP, XRD, TEM, DLS, FESEM, and BET-BJH, was used to confirm the structural integrity of the synthesized material. The catalytic performance of UoM-1 was investigated for the selective conversion of HMF to HMFCA, demonstrating its effectiveness as a low-cost, accessible catalyst. To promote a more sustainable and environmentally friendly approach, the oxidation reactions were performed in deep eutectic solvents, which offer a green, low-energy alternative to traditional solvents. This study shows that the UoM-1 catalyst not only provides an economical solution but also aligns with modern green chemistry principles, making it a highly promising candidate for future catalytic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-024-82844-3 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682365 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!