Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The increasing concern over microbial resistance to conventional antimicrobial agents used in food preservation has led to growing interest in plant-derived antimicrobial peptides (AMPs) as alternative solutions. In this study, the antimicrobial mechanisms of chia seed-derived peptides YACLKVK, KLKKNL, KLLKKYL, and KKLLKI were investigated against Staphylococcus aureus (SA) and Escherichia coli (EC). Fluorometric assays and scanning electron microscopy (SEM) demonstrated that the peptides disrupt bacterial membranes, with propidium iodide (PI) uptake reaching 72.34% in SA, calcein release of 98.27%, and N-phenyl-1-naphthylamine (NPN) uptake of 84.35% in EC. Increased membrane permeabilization was observed at concentrations above 5 mg/mL. SEM results further confirmed significant morphological changes, supporting the observed membrane damage. Additionally, the peptides showed intracellular activity by altering EC DNA mobility, suggesting a secondary antimicrobial mechanism through DNA interaction. These results indicate that the peptides are promising antimicrobials with potential mechanisms beyond membrane disruption, highlighting the need for further research to comprehensively understand their antimicrobial mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11130-024-01240-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!